70 research outputs found

    Coherent Electron-Phonon Coupling in Tailored Quantum Systems

    Full text link
    The coupling between a two-level system and its environment leads to decoherence. Within the context of coherent manipulation of electronic or quasiparticle states in nanostructures, it is crucial to understand the sources of decoherence. Here, we study the effect of electron-phonon coupling in a graphene and an InAs nanowire double quantum dot. Our measurements reveal oscillations of the double quantum dot current periodic in energy detuning between the two levels. These periodic peaks are more pronounced in the nanowire than in graphene, and disappear when the temperature is increased. We attribute the oscillations to an interference effect between two alternative inelastic decay paths involving acoustic phonons present in these materials. This interpretation predicts the oscillations to wash out when temperature is increased, as observed experimentally.Comment: 11 pages, 4 figure

    Nuclear Receptor HNF4α Binding Sequences are Widespread in Alu Repeats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression.</p> <p>Results</p> <p>Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1), are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs) to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP) to demonstrate that HNF4α binds Alu elements in the promoters of target genes (<it>ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR</it>) and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation <it>in vivo </it>(<it>APOM, PRODH2, TTR, APOA4</it>). HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites.</p> <p>Conclusions</p> <p>Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.</p

    Increased Bone Marrow Interleukin-7 (IL-7)/IL-7R Levels but Reduced IL-7 Responsiveness in HIV-Positive Patients Lacking CD4+ Gain on Antiviral Therapy

    Get PDF
    Background: The bone marrow (BM) cytokine milieu might substantially affect T-lymphocyte homeostasis in HIV-positive individuals. Interleukin-7 (IL-7) is a bone marrow-derived cytokine regulating T-cell homeostasis through a CD4+-driven feedback loop. CD4+ T-lymphopenia is associated with increased free IL-7 levels and reduced IL-7R expression/function, which are only partially reverted by highly active antiretroviral therapy (HAART). We investigated the BM production, peripheral expression and signaling (pStat5+ and Bcl-2+ CD4+/CD8+ T cells) of IL-7/IL-7Ra in 30 HAART-treated HIV-positive patients who did not experience CD4+ recovery (CD4+ #200/ml) and who had different levels of HIV viremia; these patients included 18 immunological nonresponders (INRs; HIV-RNA#50), 12 complete failures (CFs; HIV-RNA.1000), and 23 HIVseronegative subjects. Methods: We studied plasma IL-7 levels, IL-7Ra+CD4+/CD8+ T-cell proportions, IL-7Ra mRNA expression in PBMCs, spontaneous IL-7 production by BM mononuclear cells (BMMCs), and IL-7 mRNA/IL-7Ra mRNA in BMMC-derived stromal cells (SCs). We also studied T-cell responsiveness to IL-7 by measuring the proportions of pStat5+ and Bcl-2+ CD4+/CD8+ T cells. Results: Compared to HIV-seronegative controls, CFs and INRs presented elevated plasma IL-7 levels and lower IL-7Ra CD4+/CD8+ cell-surface expression and peripheral blood production, confirming the most relevant IL-7/IL-7R disruption. Interestingly, BM investigation revealed a trend of higher spontaneous IL-7 production in INRs (p = .09 vs. CFs) with a nonsignificant trend toward higher IL-7-Ra mRNA levels in BMMC-derived stromal cells. However, upon IL-7 stimulation, the proportion of pStat5+CD4+ T cells did not increase in INRs despite higher constitutive levels (p = .06); INRs also displayed lower Bcl-2+CD8+ T-cell proportions than controls (p = .04). Conclusions: Despite severe CD4+ T-lymphopenia and a disrupted IL-7/IL-7R profile in the periphery, INRs display elevated BM IL-7/IL-7Ra expression but impaired T-cell responsiveness to IL-7, suggesting the activity of a central compensatory pathway targeted to replenish the CD4+ compartment, which is nevertheless inappropriate to compensate the dysfunctional signaling through IL-7 receptor

    Progressive Activation of CD127+132− Recent Thymic Emigrants into Terminally Differentiated CD127−132+ T-Cells in HIV-1 Infection

    Get PDF
    AIM: HIV infection is associated with distortion of T-cell homeostasis and the IL-7/IL7R axis. Progressive infection results in loss of CD127+132- and gains in CD127-132+ CD4+ and CD8+ T-cells. We investigated the correlates of loss of CD127 from the T-cell surface to understand mechanisms underlying this homeostatic dysregulation. METHODS: Peripheral and cord blood mononuclear cells (PBMCs; CBMC) from healthy volunteers and PBMC from patients with HIV infection were studied. CD127+132-, CD127+132+ and CD127-132+ T-cells were phenotyped by activation, differentiation, proliferation and survival markers. Cellular HIV-DNA content and signal-joint T-cell receptor excision circles (sjTRECs) were measured. RESULTS: CD127+132- T-cells were enriched for naïve cells while CD127-132+ T-cells were enriched for activated/terminally differentiated T-cells in CD4+ and CD8+ subsets in health and HIV infection. HIV was associated with increased proportions of activated/terminally differentiated CD127-132+ T-cells. In contrast to CD127+132- T-cells, CD127-132+ T-cells were Ki-67+Bcl-2(low) and contained increased levels of HIV-DNA. Naïve CD127+132- T-cells contained a higher proportion of sjTRECs. CONCLUSION: The loss of CD127 from the T-cell surface in HIV infection is driven by activation of CD127+132- recent thymic emigrants into CD127-132+ activated/terminally differentiated cells. This process likely results in an irreversible loss of CD127 and permanent distortion of T-cell homeostasis

    The Role of Body Mass Index, Insulin, and Adiponectin in the Relation Between Fat Distribution and Bone Mineral Density

    Get PDF
    Despite the positive association between body mass index (BMI) and bone mineral density (BMD) and content (BMC), the role of fat distribution in BMD/BMC remains unclear. We examined relationships between BMD/BMC and various measurements of fat distribution and studied the role of BMI, insulin, and adiponectin in these relations. Using a cross-sectional investigation of 2631 participants from the Erasmus Rucphen Family study, we studied associations between BMD (using dual-energy X-ray absorptiometry (DXA]) at the hip, lumbar spine, total body (BMD and BMC), and fat distribution by the waist-to-hip ratio (WHR), waist-to-thigh ratio (WTR), and DXA-based trunk-to-leg fat ratio and android-to-gynoid fat ratio. Analyses were stratified by gender and median age (48.0 years in women and 49.2 years in men) and were performed with and without adjustment for BMI, fasting insulin, and adiponectin. Using linear regression (adjusting for age, height, smoking, and use of alcohol), most relationships between fat distribution and BMD and BMC were positive, except for WTR. After BMI adjustment, most correlations were negative except for trunk-to-leg fat ratio in both genders. No consistent influence of age or menopausal status was found. Insulin and adiponectin levels did not explain either positive or negative associations. In conclusion, positive associations between android fat distribution and BMD/BMC are explained by higher BMI but not by higher insulin and/or lower adiponectin levels. Inverse associations after adjustment for BMI suggest that android fat deposition as measured by the WHR, WTR, and DXA-based android-to-gynoid fat ratio is not beneficial and possibly even deleterious for bone

    IL-7 Promotes CD95-Induced Apoptosis in B Cells via the IFN-γ/STAT1 Pathway

    Get PDF
    Interleukin-7 (IL-7) concentrations are increased in the blood of CD4+ T cell depleted individuals, including HIV-1 infected patients. High IL-7 levels might stimulate T cell activation and, as we have shown earlier, IL-7 can prime resting T cell to CD95 induced apoptosis as well. HIV-1 infection leads to B cell abnormalities including increased apoptosis via the CD95 (Fas) death receptor pathway and loss of memory B cells. Peripheral B cells are not sensitive for IL-7, due to the lack of IL-7Ra expression on their surface; however, here we demonstrate that high IL-7 concentration can prime resting B cells to CD95-mediated apoptosis via an indirect mechanism. T cells cultured with IL-7 induced high CD95 expression on resting B cells together with an increased sensitivity to CD95 mediated apoptosis. As the mediator molecule responsible for B cell priming to CD95 mediated apoptosis we identified the cytokine IFN-γ that T cells secreted in high amounts in response to IL-7. These results suggest that the lymphopenia induced cytokine IL-7 can contribute to the increased B cell apoptosis observed in HIV-1 infected individuals

    Complete Sequencing and Pan-Genomic Analysis of Lactobacillus delbrueckii subsp. bulgaricus Reveal Its Genetic Basis for Industrial Yogurt Production

    Get PDF
    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production

    Applications of CRISPR–Cas systems in neuroscience

    Get PDF
    Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03

    Antagonist G-mediated targeting and cytotoxicity of liposomal doxorubicin in NCI-H82 variant small cell lung cancer

    Get PDF
    The aim of the present study was to characterize the interactions of antagonist G (H-Arg-D-Trp-N(me)Phe-D-Trp-Leu-Met-NH 2)-targeted sterically stabilized liposomes with the human variant small cell lung cancer (SCLC) H82 cell line and to evaluate the antiproliferative activity of encapsulated doxorubicin against this cell line. Variant SCLC tumors are known to be more resistant to chemotherapy than classic SCLC tumors. The cellular association of antagonist G-targeted (radiolabeled) liposomes was 20-30-fold higher than that of non-targeted liposomes. Our data suggest that a maximum of 12,000 antagonist G-targeted liposomes were internalized/cell during 1-h incubation at 37 masculine C. Confocal microscopy experiments using pyranine-containing liposomes further confirmed that receptor-mediated endocytosis occurred, specifically in the case of targeted liposomes. In any of the previously mentioned experiments, the binding and endocytosis of non-targeted liposomes have revealed to be negligible. The improved cellular association of antagonist G-targeted liposomes, relative to non-targeted liposomes, resulted in an enhanced nuclear delivery (evaluated by fluorimetry) and cytotoxicity of encapsulated doxorubicin for incubation periods as short as 2 h. For an incubation of 2 h, we report IC50 values for targeted and non-targeted liposomes containing doxorubicin of 5.7 +/- 3.7 and higher than 200 micro M doxorubicin, respectively. Based on the present data, we may infer that receptors for antagonist G were present in H82 tumor cells and could mediate the internalization of antagonist G-targeted liposomes and the intracellular delivery of their content. Antagonist G covalently coupled to liposomal drugs may be promising for the treatment of this aggressive and highly heterogeneous diseas
    corecore