2,275 research outputs found
Discovery of a second SALMFamide gene in the sea urchin Strongylocentrotus purpuratus reveals that L-type and F-type SALMFamide neuropeptides coexist in an echinoderm species
NOTICE: this is the author’s version of a work that was accepted for publication in MARINE GENOMICS. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in MARINE GENOMICS, [VOL 3, ISSUE 2, (2010)] DOI: 10.1016/j.margen.2010.08.00
Bioactivity and structural properties of chimeric analogs of the starfish SALMFamide neuropeptides S1 and S2
The starfish SALMFamide neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide) are the prototypical members of a family of neuropeptides that act as muscle relaxants in echinoderms. Comparison of the bioactivity of S1 and S2 as muscle relaxants has revealed that S2 is ten times more potent than S1. Here we investigated a structural basis for this difference in potency by comparing the bioactivity and solution conformations (using NMR and CD spectroscopy) of S1 and S2 with three chimeric analogs of these peptides. A peptide comprising S1 with the addition of S2's N-terminal tetrapeptide (Long S1 or LS1; SGPYGFNSALMFamide) was not significantly different to S1 in its bioactivity and did not exhibit concentration-dependent structuring seen with S2. An analog of S1with its penultimate residue substituted from S2 (S1(T); GFNSALTFamide) exhibited S1-like bioactivity and structure. However, an analog of S2 with its penultimate residue substituted from S1 (S2(M); SGPYSFNSGLMFamide) exhibited loss of S2-type bioactivity and structural properties. Collectively, our data indicate that the C-terminal regions of S1 and S2 are the key determinants of their differing bioactivity. However, the N-terminal region of S2 may influence its bioactivity by conferring structural stability in solution. Thus, analysis of chimeric SALMFamides has revealed
how neuropeptide bioactivity is determined by a complex interplay of sequence and conformation
Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association
The neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide), which share sequence similarity, were discovered in the starfish Asterias rubens and are prototypical members of the SALMFamide family of neuropeptides in echinoderms. SALMFamide neuropeptides act as muscle relaxants and both S1 and S2 cause relaxation of cardiac stomach and tube foot preparations in vitro but S2 is an order of magnitude more potent than S1. Here we investigated a structural basis for this difference in potency using spectroscopic techniques. Circular dichroism spectroscopy showed that S1 does not have a defined structure in aqueous solution and this was supported by 2D nuclear magnetic resonance experiments. In contrast, we found that S2 has a well-defined conformation in aqueous solution. However, the conformation of S2 was concentration dependent, with increasing concentration inducing a transition from an unstructured to a structured conformation. Interestingly, this property of S2 was not observed in an N-terminally truncated analogue of S2 (short S2 or SS2; SFNSGLTFamide). Collectively, the data obtained indicate that the N-terminal region of S2 facilitates peptide self-association at high concentrations, which may have relevance to the biosynthesis and/or bioactivity of S2 in vivo
New spectral bounds on the chromatic number encompassing all eigenvalues of the adjacency matrix
The purpose of this article is to improve existing lower bounds on the
chromatic number chi. Let mu_1,...,mu_n be the eigenvalues of the adjacency
matrix sorted in non-increasing order.
First, we prove the lower bound chi >= 1 + max_m {sum_{i=1}^m mu_i / -
sum_{i=1}^m mu_{n-i+1}} for m=1,...,n-1. This generalizes the Hoffman lower
bound which only involves the maximum and minimum eigenvalues, i.e., the case
. We provide several examples for which the new bound exceeds the {\sc
Hoffman} lower bound.
Second, we conjecture the lower bound chi >= 1 + S^+ / S^-, where S^+ and S^-
are the sums of the squares of positive and negative eigenvalues, respectively.
To corroborate this conjecture, we prove the weaker bound chi >= S^+/S^-. We
show that the conjectured lower bound is tight for several families of graphs.
We also performed various searches for a counter-example, but none was found.
Our proofs rely on a new technique of converting the adjacency matrix into
the zero matrix by conjugating with unitary matrices and use majorization of
spectra of self-adjoint matrices.
We also show that the above bounds are actually lower bounds on the
normalized orthogonal rank of a graph, which is always less than or equal to
the chromatic number. The normalized orthogonal rank is the minimum dimension
making it possible to assign vectors with entries of modulus one to the
vertices such that two such vectors are orthogonal if the corresponding
vertices are connected.
All these bounds are also valid when we replace the adjacency matrix A by W *
A where W is an arbitrary self-adjoint matrix and * denotes the Schur product,
that is, entrywise product of W and A
The evolution and variety of RFamide-type neuropeptides: insights from deuterostomian invertebrates
Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide–receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates – urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom
Unified spectral bounds on the chromatic number
One of the best known results in spectral graph theory is the following lower
bound on the chromatic number due to Alan Hoffman, where mu_1 and mu_n are
respectively the maximum and minimum eigenvalues of the adjacency matrix: chi
>= 1 + mu_1 / (- mu_n). We recently generalised this bound to include all
eigenvalues of the adjacency matrix.
In this paper, we further generalize these results to include all eigenvalues
of the adjacency, Laplacian and signless Laplacian matrices. The various known
bounds are also unified by considering the normalized adjacency matrix, and
examples are cited for which the new bounds outperform known bounds
- …