7,694 research outputs found

    Soil-transmitted helminthiasis in Laos: A community-wide cross-sectional study of humans and dogs in a mass drug administration environment

    Get PDF
    We conducted a community cross-sectional survey of soil-transmitted helminthiasis in humans and dogs in four provinces in northern Laos. We collected and tested human and dog fecal samples and analyzed results against sociodemographic data. The prevalence of Ascaris lumbricoides, Trichuris trichiura, hookworm, and Strongyloides stercoralis was 26.1% (95% confidence interval [CI,1 = 23.7-28.4%), 41.5% (95% CI = 38.8-44.1%), 46.3% (95% CI = 43.3-49.0%), and 8.9% (95% CI = 7.4-10.4%), respectively. We observed strong heterogeneity for helminthiasis by ethnicity, province, and wealth status, which coincided with a risk profile demonstrating that Mon-Khmer persons and the poorest households are highly vulnerable. Necator americanus was the dominant hookworm species infecting humans and Ancylostoma ceylanicum was the only Ancylastoma species detected. Hookworm prevalence in village dogs was 94%, and the dominant species was A. ceylanicum. Necator americanus was also detected in dogs. It appears that dogs have a role in human hookworm transmission and warrant further investigation

    Status of Neutrino Masses and Mixing and Future Perspectives

    Get PDF
    Status of the problem of neutrino masses, mixing and oscillations is discussed. Future perspectives are briefly considered.Comment: Report at the conference IRGAC 2006, Barcelona July 11-15 200

    Nucleosynthesis in the Early Galaxy

    Full text link
    Recent observations of r-process-enriched metal-poor star abundances reveal a non-uniform abundance pattern for elements Z≀47Z\leq47. Based on non-correlation trends between elemental abundances as a function of Eu-richness in a large sample of metal-poor stars, it is shown that the mixing of a consistent and robust light element primary process (LEPP) and the r-process pattern found in r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we derive the abundance pattern of the LEPP from observation and show that it is consistent with a missing component in the solar abundances when using a recent s-process model. As the astrophysical site of the LEPP is not known, we explore the possibility of a neutron capture process within a site-independent approach. It is suggested that scenarios with neutron densities nn≀1013n_{n}\leq10^{13} cm−3cm^{-3} or in the range nn≄1024n_{n}\geq10^{24} cm−3cm^{-3} best explain the observations.Comment: 28 pages, 7 Postscript figures. To be published in The Astrophysical Journa

    Quantum Phase Transitions in the Ising model in spatially modulated field

    Full text link
    The phase transitions in the transverse field Ising model in a competing spatially modulated (periodic and oscillatory) longitudinal field are studied numerically. There is a multiphase point in absence of the transverse field where the degeneracy for a longitudinal field of wavelength λ\lambda is (1+52)2N/λ(\frac {1 + \sqrt{5}}{2})^{2N/\lambda} for a system with NN spins, an exact result obtained from the known result for λ=2\lambda =2. The phase transitions in the Γ\Gamma (transverse field) versus h0h_0 (amplitude of the longitudinal field) phase diagram are obtained from the vanishing of the mass gap Δ\Delta. We find that for all the phase transition points obtained in this way, Δ\Delta shows finite size scaling behaviour signifying a continuous phase transition everywhere. The values of the critical exponents show that the model belongs to the universality class of the two dimensional Ising model. The longitudinal field is found to have the same scaling behaviour as that of the transverse field, which seems to be a unique feature for the competing field. The phase boundaries for two different wavelengths of the modulated field are obtained. Close to the multiphase point at hch_c, the phase boundary behaves as (hc−h0)b(h_c - h_0)^b, where bb is also λ\lambda dependent.Comment: To appear in Physical Review

    Controls on atmospheric chloroiodomethane (CH2ClI) in marine environments

    Get PDF
    Mixing ratios of chloroiodomethane (CH2ClI) in ambient air were quantified in the coastal North Atlantic region (Thompson Farm, Durham, New Hampshire, and Appledore Island, Maine) and two remote Pacific areas (Christmas Island, Kiribati, and Oahu, Hawaii). Average mixing ratios were 0.15 ± 0.18 and 0.68 ± 0.66 parts per trillion by volume (pptv) at Thompson Farm and Appledore Island, respectively, compared to 0.10 ± 0.05 pptv at Christmas Island and 0.04 ± 0.02 pptv in Hawaii. Photolysis constrained the daytime mixing ratios of CH2ClI at all locations with the minimum occurring at 1600 local time. Daily average fluxes to the atmosphere were estimated from mixing ratios and loss due to photolysis at Appledore Island, Christmas Island and Hawaii, and were 58 ± 9, 19 ± 3, and 5.8 ± 1.0 nmol CH2ClI m−2 d−1, respectively. The measured sea‐to‐air flux from seawater equilibrator samples obtained near Appledore Island was 6.4 ± 2.9 nmol CH2ClI m−2 d−1. Mixing ratios of CH2ClI at Appledore Island increased with increasing wind speed. The maximum mixing ratios observed at Thompson Farm (1.6 pptv) and Appledore Island (3.4 pptv) are the highest reported values to date, and coincided with high winds associated with the passage of Tropical Storm Bonnie. We estimate that high winds during the 2004 hurricane season increased the flux of CH2ClI from the North Atlantic Ocean by 8 ± 2%

    Modulation of Queuine Uptake and Incorporation into tRNA by Protein Kinase C and Protein Phosphatase

    Get PDF
    It has been suggested that the rate of queuine uptake into cultured human fibroblasts is controlled by phosphorylation levels within the cell. We show that the uptake of queuine is stimulated by activators of protein kinase C (PKC) and inhibitors of protein phosphatase; while inhibitors of PKC, and down-regulation of PKC by chronic exposure to phorbol esters inhibit the uptake of queuine into cultured human fibroblasts. Activators of cAMP- and cGMP-dependent kinases exert no effect on the uptake of queuine into fibroblast cell cultures. These studies suggest that PKC directly supports the activity of the queuine uptake mechanism, and that protein phosphatase activity in the cell acts to reverse this. Regardless of the modulation of uptake rate, the level of intracellular queuine base saturates in 6 h. However, there is still an effect on the incorporation rate of queuine into tRNA of fibroblast cultures even after 24 h. We now show that the incorporation of queuine into tRNA in cultured human fibroblasts by tRNA-guanine ribosyltransferase (TGRase) is also stimulated by activators of PKC and inhibitors of protein phosphatase; while inhibitors of PKC decrease the activity of this enzyme. These studies suggest that PKC supports both the cellular transport of queuine and the activity of TGRase in cultured human fibroblasts, and that protein phosphatase activity in fibroblasts acts to reverse this phenomenon. A kinase-phosphatase control system, that is common to controlling both intracellular signal transduction and many enzyme systems, appears to be controlling the availability of the queuine substrate and the mechanism for its incorporation into tRNA. Since hypomodification of transfer RNA with queuine is commonly observed in undifferentiated, rapidly growing and neoplastically transformed cells, phosphorylation of the queuine modification system may be a critical regulatory mechanism for the modification of tRNA and subsequent control of cell growth and differentiation

    Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses.

    Get PDF
    Published onlineJournal ArticleOcean acidification (OA) is expected to indirectly impact biota living in contaminated coastal environments by altering the bioavailability and potentially toxicity of many pH-sensitive metals. Here, we show that OA (pH 7.71; pCO2 1480 Όatm) significantly increases the toxicity responses to a global coastal contaminant (copper ~0.1 ΌM) in two keystone benthic species; mussels (Mytilus edulis) and purple sea urchins (Paracentrotus lividus). Mussels showed an extracellular acidosis in response to OA and copper individually which was enhanced during combined exposure. In contrast, urchins maintained extracellular fluid pH under OA by accumulating bicarbonate but exhibited a slight alkalosis in response to copper either alone or with OA. Importantly, copper-induced damage to DNA and lipids was significantly greater under OA compared to control conditions (pH 8.14; pCO2 470 Όatm) for both species. However, this increase in DNA-damage was four times lower in urchins than mussels, suggesting that internal acid-base regulation in urchins may substantially moderate the magnitude of this OA-induced copper toxicity effect. Thus, changes in metal toxicity under OA may not purely be driven by metal speciation in seawater and may be far more diverse than either single-stressor or single-species studies indicate. This has important implications for future environmental management strategies.CL was supported by a Natural Environment Research Council (NERC) UK Fellowship: NE/G014728/1. CL, RE and RW were supported by a UK-OARP NERC consortium grant NE/H017496/1. SN was supported by a Cefas-Exeter funded studentship. Thanks to Jan Shears, Darren Rowe and John Dowdle for their excellent technical support. The determination of total copper in the seawater media was undertaken by Dr. A. Fisher of the Analytical Research Facility, SoGEES, Plymouth University under ISO 9001:2008 certification. The authors would like to thank John Spicer for his insightful comments on the manuscript
    • 

    corecore