45 research outputs found

    Blue Obelisk - Interoperability in chemical informatics

    Get PDF
    The Blue Obelisk Movement (http://www.blueobelisk.org/) is the name used by a diverse Internet group promoting reusable chemistry via open source software development, consistent and complimentary chemoinformatics research, open data, and open standards. We outline recent examples of cooperation in the Blue Obelisk group:  a shared dictionary of algorithms and implementations in chemoinformatics algorithms drawing from our various software projects; a shared repository of chemoinformatics data including elemental properties, atomic radii, isotopes, atom typing rules, and so forth; and Web services for the platform-independent use of chemoinformatics programs

    Computational toxicology using the OpenTox application programming interface and Bioclipse

    Get PDF
    BACKGROUND: Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on being able to integrate information from many sources. The required integration of biological and chemical information sources requires, however, a common language to express our knowledge ontologically, and interoperating services to build reliable predictive toxicology applications. FINDINGS: This article describes progress in extending the integrative bio- and cheminformatics platform Bioclipse to interoperate with OpenTox, a semantic web framework which supports open data exchange and toxicology model building. The Bioclipse workbench environment enables functionality from OpenTox web services and easy access to OpenTox resources for evaluating toxicity properties of query molecules. Relevant cases and interfaces based on ten neurotoxins are described to demonstrate the capabilities provided to the user. The integration takes advantage of semantic web technologies, thereby providing an open and simplifying communication standard. Additionally, the use of ontologies ensures proper interoperation and reliable integration of toxicity information from both experimental and computational sources. CONCLUSIONS: A novel computational toxicity assessment platform was generated from integration of two open science platforms related to toxicology: Bioclipse, that combines a rich scriptable and graphical workbench environment for integration of diverse sets of information sources, and OpenTox, a platform for interoperable toxicology data and computational services. The combination provides improved reliability and operability for handling large data sets by the use of the Open Standards from the OpenTox Application Programming Interface. This enables simultaneous access to a variety of distributed predictive toxicology databases, and algorithm and model resources, taking advantage of the Bioclipse workbench handling the technical layers

    The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web

    Get PDF
    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA)

    How Large Is the Metabolome? A Critical Analysis of Data Exchange Practices in Chemistry

    Get PDF
    Calculating the metabolome size of species by genome-guided reconstruction of metabolic pathways misses all products from orphan genes and from enzymes lacking annotated genes. Hence, metabolomes need to be determined experimentally. Annotations by mass spectrometry would greatly benefit if peer-reviewed public databases could be queried to compile target lists of structures that already have been reported for a given species. We detail current obstacles to compile such a knowledge base of metabolites.As an example, results are presented for rice. Two rice (oryza sativa) subspecies have been fully sequenced, oryza japonica and oryza indica. Several major small molecule databases were compared for listing known rice metabolites comprising PubChem, Chemical Abstracts, Beilstein, Patent databases, Dictionary of Natural Products, SetupX/BinBase, KNApSAcK DB, and finally those databases which were obtained by computational approaches, i.e. RiceCyc, KEGG, and Reactome. More than 5,000 small molecules were retrieved when searching these databases. Unfortunately, most often, genuine rice metabolites were retrieved together with non-metabolite database entries such as pesticides. Overlaps from database compound lists were very difficult to compare because structures were either not encoded in machine-readable format or because compound identifiers were not cross-referenced between databases.We conclude that present databases are not capable of comprehensively retrieving all known metabolites. Metabolome lists are yet mostly restricted to genome-reconstructed pathways. We suggest that providers of (bio)chemical databases enrich their database identifiers to PubChem IDs and InChIKeys to enable cross-database queries. In addition, peer-reviewed journal repositories need to mandate submission of structures and spectra in machine readable format to allow automated semantic annotation of articles containing chemical structures. Such changes in publication standards and database architectures will enable researchers to compile current knowledge about the metabolome of species, which may extend to derived information such as spectral libraries, organ-specific metabolites, and cross-study comparisons

    Method for the computational comparison of crystal structures

    No full text
    A new method for assessing the similarity of crystal structures is described. A similarity measure is important in classification and clustering problems in which the crystal structures are the source of information. Classification is particularly important for the understanding of properties of crystals, while clustering can be used as a data reduction step in polymorph prediction. The method described uses a radial distribution function that combines atomic coordinates with partial atomic charges. The descriptor is validated using experimental data from a classification study of clathrate structures of cephalosporins and data from a polymorph prediction run. In both cases, excellent results were obtained

    Cationic gemini Surfactants based on tartaric acid: Synthesis, aggregation, monolayer behaviour, and interaction with DNA

    No full text
    The synthesis of three novel cationic gemini surfactants (10, 12, and 14) based on tartaric acid appended with biocompatible palmitoyl tails and head groups is described, and their aggregation in water, monolayer behaviour, DNA binding, and gene transfection activities are reported. The monolayer studies showed that the molecular area of the surfactants is determined by the head group, as it increased going from the ethylenediamine head group of 10 via the lysine head group of 12 to the combined lysine/ethylenediamine head group of 14. Electron microscopy showed that the surfactants with the smaller head groups (10 and 12) form plate-like structures, probably stacked bilayers, in line with the shape-structure concept, whereas no structures are observed for the largest surfactant 14. A CD spectroscopic titration of gimel-phage DNA with surfactants 12 and 14 showed that there was some interaction, although the secondary structure of the DNA was hardly affected. The effects of the novel surfactants and commercially available DOTAP [N-(2,3-dioleoyloxypropyl)N,N,N-trimethylammonium methyl sulfate] were identical when compared on the basis of charge complimentarity, indicating that the complexation of DNA with the surfactant is a process of ion exchange. DNA binding was confirmed by the ability of all surfactants (10, 12, and 14) to release ethidium bromide from its complex with DNA in an agarose gel electrophoresis experiment. Both lysine containing surfactants 12 and 14 showed activity in a luciferase gene-transfection assay but this was accompanied by a considerable toxicity

    Emerging practices for mapping and linking life sciences data using RDF - A case series

    Get PDF
    Members of the W3C Health Care and Life Sciences Interest Group (HCLS IG) have published a variety of genomic and drug-related data sets as Resource Description Framework (RDF) triples. This experience has helped the interest group define a general data workflow for mapping health care and life science (HCLS) data to RDF and linking it with other Linked Data sources. This paper presents the workflow along with four case studies that demonstrate the workflow and addresses many of the challenges that may be faced when creating new Linked Data resources. The first case study describes the creation of linked RDF data from microarray data sets while the second discusses a linked RDF data set created from a knowledge base of drug therapies and drug targets. The third case study describes the creation of an RDF index of biomedical concepts present in unstructured clinical reports and how this index was linked to a drug side-effect knowledge base. The final case study describes the initial development of a linked data set from a knowledge base of small molecules. This paper also provides a detailed set of recommended practices for creating and publishing Linked Data sources in the HCLS domain in such a way that they are discoverable and usable by people, software agents, and applications. These practices are based on the cumulative experience of the Linked Open Drug Data (LODD) task force of the HCLS IG. While no single set of recommendations can address all of the heterogeneous information needs that exist within the HCLS domains, practitioners wishing to create Linked Data should find the recommendations useful for identifying the tools, techniques, and practices employed by earlier developers. In addition to clarifying available methods for producing Linked Data, the recommendations for metadata should also make the discovery and consumption of Linked Data easier. © 2012 Elsevier B.V. All rights reserved
    corecore