65 research outputs found
Whole-genome association analysis of treatment response in obsessive-compulsive disorder.
Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response have not been systematically investigated using genome-wide association study (GWAS). To identify specific genetic variations potentially influencing SRI response, we conducted a GWAS study in 804 OCD patients with information on SRI response. SRI response was classified as 'response' (n=514) or 'non-response' (n=290), based on self-report. We used the more powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of the variants in probands. The top single-nucleotide polymorphism (SNP) was rs17162912 (P=1.76 × 10(-8)), which is near the DISP1 gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six SNPs showing suggestive evidence of association (P<10(-5)) were rs9303380, rs12437601, rs16988159, rs7676822, rs1911877 and rs723815. Among them, two SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave P-values of 2.86 × 10(-6) and 8.41 × 10(-6), respectively. The other 35 variations with signals of potential significance (P<10(-4)) involve multiple genes expressed in the brain, including GRIN2B, PCDH10 and GPC6. Our enrichment analysis indicated suggestive roles of genes in the glutamatergic neurotransmission system (false discovery rate (FDR)=0.0097) and the serotonergic system (FDR=0.0213). Although the results presented may provide new insights into genetic mechanisms underlying treatment response in OCD, studies with larger sample sizes and detailed information on drug dosage and treatment duration are needed
Recommended from our members
Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS.
Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive thoughts and urges and repetitive, intentional behaviors that cause significant distress and impair functioning. The OCD Collaborative Genetics Association Study (OCGAS) is comprised of comprehensively assessed OCD patients with an early age of OCD onset. After application of a stringent quality control protocol, a total of 1065 families (containing 1406 patients with OCD), combined with population-based samples (resulting in a total sample of 5061 individuals), were studied. An integrative analyses pipeline was utilized, involving association testing at single-nucleotide polymorphism (SNP) and gene levels (via a hybrid approach that allowed for combined analyses of the family- and population-based data). The smallest P-value was observed for a marker on chromosome 9 (near PTPRD, P=4.13 × 10(-)(7)). Pre-synaptic PTPRD promotes the differentiation of glutamatergic synapses and interacts with SLITRK3. Together, both proteins selectively regulate the development of inhibitory GABAergic synapses. Although no SNPs were identified as associated with OCD at genome-wide significance level, follow-up analyses of genome-wide association study (GWAS) signals from a previously published OCD study identified significant enrichment (P=0.0176). Secondary analyses of high-confidence interaction partners of DLGAP1 and GRIK2 (both showing evidence for association in our follow-up and the original GWAS study) revealed a trend of association (P=0.075) for a set of genes such as NEUROD6, SV2A, GRIA4, SLC1A2 and PTPRD. Analyses at the gene level revealed association of IQCK and C16orf88 (both P<1 × 10(-)(6), experiment-wide significant), as well as OFCC1 (P=6.29 × 10(-)(5)). The suggestive findings in this study await replication in larger samples
A phase II, open-label study of tomivosertib (eFT508) added on to continued checkpoint inhibitor therapy in patients (pts) with insufficient response to single-agent treatment.
Background: Despite the broad activity of checkpoint inhibitors across tumor types, primary or secondary resistance after initial response represents a major challenge. Tomivosertib (T), a potent and highly selective inhibitor of the immunosuppressive kinases MNK-1 and 2, blocks expression of checkpoint proteins PD-1, PD-L1, and LAG-3 as well as immunosuppressive cytokines IL-6 and IL-8. In preclinical models, T was shown to trigger an anti-tumor immune response and enhance the activity of checkpoint inhibitors in a T-cell dependent manner. In prior clinical studies, T had an acceptable safety profile as a single agent and in combination with anti-PD-L1 agent avelumab. Methods: Patients experiencing insufficient response (progression or stable disease for 12 weeks or more) to any FDA-approved checkpoint inhibitor in any approved indication were eligible. T at 200 mg oral (PO) BID was added to the existing checkpoint inhibitor until disease progression or unacceptable toxicity was noted. Results: 39 pts (23 male, 16 female) were enrolled across seven cancer types. Median age was 68 (range 42-85). Median prior therapies were 2 (range 1-6). The most common cancers were lung (N = 17), urothelial (N = 6), renal (N = 5) and head and neck (N = 5). 36 pts continued on anti PD-1 antibody (Pembrolizumab and Nivolumab, 18 each) and 3 on anti PD-L-1 antibody (Durvalumab 2, Atezolizumab 1) . The most common grade 3/4 treatment related adverse events occurring in more than 1 pt were alanine aminotransferase increase (2), blood creatine phosphokinase increase (2) and maculo-papular rash (2). 7 patients discontinued treatment (18%) due to adverse events attributable to either drug. Three partial responses (PR) per RECIST 1.1 were observed in pts with previous progression on checkpoint inhibitor therapy, one each in NSCLC (1/17), gastric (1/1) and renal cancer (1/5). 7 NSCLC pts (41%) were progression free for ≥ 24 weeks. All NSCLC patients entered the study with progression by RECIST 1.1 on single agent checkpoint inhibitor prior to adding T. Conclusions: The addition of T to existing checkpoint therapy was well tolerated and manifested clinical activity including objective responses in pts with progression on existing checkpoint inhibitor. A Progression Free Survival rate at 24 weeks of 41% was noted in NSCLC patients. Additional studies evaluating the addition of T to checkpoint inhibitor therapy after progression on anti PD-1 or PD-L-1 therapy are planned. Clinical trial information: NCT03616834
Evaluation of the CSM-CROPGRO-Soybean model for dual-purpose soyabean in Kenya
Limited information is available on the potential performance of introduced dual purpose varieties across different Kenyan soils and agro-ecological environments and consistency across sites and seasons. Crop simulation modeling offers an opportunity to explore the potential of and select introduced cultivars for new areas before establishing costly and time-consuming field trials. Dual purpose soybeans were introduced due to their ability to improve soils and at the same time provide substantial grain yields. The objective of this study was to derive genetic coefficients of recently introduced dual purpose soybean varieties and to explore the reliability of the Cropping System Model (CSM)-CROPGRO-Soybean model in simulating phenology and yield of the dual purpose varieties under different environments. Field trials for seven varieties were conducted across three sites in two seasons and data on phenology and management, soil characteristics and weather was collected and used in the CROPGRO model. A stepwise procedure was used in the calibration of the model to derive the genetic coefficients. Two sets of data from Kakamega and Kitale were used in calibration process while 2006 data for Kakamega and Msabaha, were used for evaluation of the model. The derived genetic coefficients provided simulated values of various development and growth parameters that were in good agreement with their corresponding observed values for most parameters. Model evaluation with independent data sets gave similar results. The differences among the cultivars were also expressed through the differences in the derived genetic coefficients. CROPGRO was able to accurately predict growth, phenology and yield. The model predicted the first flowering dates to within 2¿3 days of the observed values, the first pod dates within 3 days of the observed values and yields within 5¿300 kg ha-1 of the observed yields. The genetic coefficients derived in CROPGRO model can, therefore, be used to predict soybean yield and phenology of the dual purpose soybean varieties across different agro-ecological zones. (Résumé d'auteur
Recommended from our members
Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS.
Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive thoughts and urges and repetitive, intentional behaviors that cause significant distress and impair functioning. The OCD Collaborative Genetics Association Study (OCGAS) is comprised of comprehensively assessed OCD patients with an early age of OCD onset. After application of a stringent quality control protocol, a total of 1065 families (containing 1406 patients with OCD), combined with population-based samples (resulting in a total sample of 5061 individuals), were studied. An integrative analyses pipeline was utilized, involving association testing at single-nucleotide polymorphism (SNP) and gene levels (via a hybrid approach that allowed for combined analyses of the family- and population-based data). The smallest P-value was observed for a marker on chromosome 9 (near PTPRD, P=4.13 × 10(-)(7)). Pre-synaptic PTPRD promotes the differentiation of glutamatergic synapses and interacts with SLITRK3. Together, both proteins selectively regulate the development of inhibitory GABAergic synapses. Although no SNPs were identified as associated with OCD at genome-wide significance level, follow-up analyses of genome-wide association study (GWAS) signals from a previously published OCD study identified significant enrichment (P=0.0176). Secondary analyses of high-confidence interaction partners of DLGAP1 and GRIK2 (both showing evidence for association in our follow-up and the original GWAS study) revealed a trend of association (P=0.075) for a set of genes such as NEUROD6, SV2A, GRIA4, SLC1A2 and PTPRD. Analyses at the gene level revealed association of IQCK and C16orf88 (both P<1 × 10(-)(6), experiment-wide significant), as well as OFCC1 (P=6.29 × 10(-)(5)). The suggestive findings in this study await replication in larger samples
Recommended from our members
Whole-genome association analysis of treatment response in obsessive-compulsive disorder.
Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response have not been systematically investigated using genome-wide association study (GWAS). To identify specific genetic variations potentially influencing SRI response, we conducted a GWAS study in 804 OCD patients with information on SRI response. SRI response was classified as 'response' (n=514) or 'non-response' (n=290), based on self-report. We used the more powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of the variants in probands. The top single-nucleotide polymorphism (SNP) was rs17162912 (P=1.76 × 10(-8)), which is near the DISP1 gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six SNPs showing suggestive evidence of association (P<10(-5)) were rs9303380, rs12437601, rs16988159, rs7676822, rs1911877 and rs723815. Among them, two SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave P-values of 2.86 × 10(-6) and 8.41 × 10(-6), respectively. The other 35 variations with signals of potential significance (P<10(-4)) involve multiple genes expressed in the brain, including GRIN2B, PCDH10 and GPC6. Our enrichment analysis indicated suggestive roles of genes in the glutamatergic neurotransmission system (false discovery rate (FDR)=0.0097) and the serotonergic system (FDR=0.0213). Although the results presented may provide new insights into genetic mechanisms underlying treatment response in OCD, studies with larger sample sizes and detailed information on drug dosage and treatment duration are needed
- …