159 research outputs found

    Effects of methamphetamine abuse and serotonin transporter gene variants on aggression and emotion-processing neurocircuitry.

    Get PDF
    Individuals who abuse methamphetamine (MA) exhibit heightened aggression, but the neurobiological underpinnings are poorly understood. As variability in the serotonin transporter (SERT) gene can influence aggression, this study assessed possible contributions of this gene to MA-related aggression. In all, 53 MA-dependent and 47 control participants provided self-reports of aggression, and underwent functional magnetic resonance imaging while viewing pictures of faces. Participants were genotyped at two functional polymorphic loci in the SERT gene: the SERT-linked polymorphic region (SERT-LPR) and the intron 2 variable number tandem repeat polymorphism (STin2 VNTR); participants were then classified as having high or low risk for aggression according to individual SERT risk allele combinations. Comparison of SERT risk allele loads between groups showed no difference between MA-dependent and control participants. Comparison of self-report scores showed greater aggression in MA-dependent than control participants, and in high genetic risk than low-risk participants. Signal change in the amygdala was lower in high genetic risk than low-risk participants, but showed no main effect of MA abuse; however, signal change correlated negatively with MA use measures. Whole-brain differences in activation were observed between MA-dependent and control groups in the occipital and prefrontal cortex, and between genetic high- and low-risk groups in the occipital, fusiform, supramarginal and prefrontal cortex, with effects overlapping in a small region in the right ventrolateral prefrontal cortex. The findings suggest that the investigated SERT risk allele loads are comparable between MA-dependent and healthy individuals, and that MA and genetic risk influence aggression independently, with minimal overlap in associated neural substrates

    healthcareCOVID: a national cross-sectional observational study identifying risk factors for developing suspected or confirmed COVID-19 in UK healthcare workers.

    Get PDF
    To establish the prevalence, risk factors and implications of suspected or confirmed coronavirus disease 2019 (COVID-19) infection among healthcare workers in the United Kingdom (UK). Cross-sectional observational study. UK-based primary and secondary care. Healthcare workers aged ≥18 years working between 1 February and 25 May 2020. A composite endpoint of laboratory-confirmed diagnosis of SARS-CoV-2, or self-isolation or hospitalisation due to suspected or confirmed COVID-19. Of 6,152 eligible responses, the composite endpoint was present in 1,806 (29.4%) healthcare workers, of whom 49 (0.8%) were hospitalised, 459 (7.5%) tested positive for SARS-CoV-2, and 1,776 (28.9%) reported self-isolation. Overall, between 11,870 and 21,158 days of self-isolation were required by the cohort, equalling approximately 71 to 127 working days lost per 1,000 working days. The strongest risk factor associated with the presence of the primary composite endpoint was increasing frequency of contact with suspected or confirmed COVID-19 cases without adequate personal protective equipment (PPE): 'Never' (reference), 'Rarely' (adjusted odds ratio 1.06, (95% confidence interval: [0.87-1.29])), 'Sometimes' (1.7 [1.37-2.10]), 'Often' (1.84 [1.28-2.63]), 'Always' (2.93, [1.75-5.06]). Additionally, several comorbidities (cancer, respiratory disease, and obesity); working in a 'doctors' role; using public transportation for work; regular contact with suspected or confirmed COVID-19 patients; and lack of PPE were also associated with the presence of the primary endpoint. A total of 1,382 (22.5%) healthcare workers reported lacking access to PPE items while having clinical contact with suspected or confirmed COVID-19 cases. Suspected or confirmed COVID-19 was more common in healthcare workers than in the general population and is associated with significant workforce implications. Risk factors included inadequate PPE, which was reported by nearly a quarter of healthcare workers. Governments and policymakers must ensure adequate PPE is available as well as developing strategies to mitigate risk for high-risk healthcare workers during future COVID-19 waves. [Abstract copyright: © 2021 Kua et al.

    Cytogenetic abnormalities and fragile-x syndrome in Autism Spectrum Disorder

    Get PDF
    BACKGROUND: Autism is a behavioral disorder with impaired social interaction, communication, and repetitive and stereotypic behaviors. About 5–10 % of individuals with autism have 'secondary' autism in which an environmental agent, chromosome abnormality, or single gene disorder can be identified. Ninety percent have idiopathic autism and a major gene has not yet been identified. We have assessed the incidence of chromosome abnormalities and Fragile X syndrome in a population of autistic patients referred to our laboratory. METHODS: Data was analyzed from 433 patients with autistic traits tested using chromosome analysis and/or fluorescence in situ hybridization (FISH) and/or molecular testing for fragile X syndrome by Southern and PCR methods. RESULTS: The median age was 4 years. Sex ratio was 4.5 males to 1 female [354:79]. A chromosome (cs) abnormality was found in 14/421 [3.33 %] cases. The aberrations were: 4/14 [28%] supernumerary markers; 4/14 [28%] deletions; 1/14 [7%] duplication; 3/14 [21%] inversions; 2/14 [14%] translocations. FISH was performed on 23 cases for reasons other than to characterize a previously identified cytogenetic abnormality. All 23 cases were negative. Fragile-X testing by Southern blots and PCR analysis found 7/316 [2.2 %] with an abnormal result. The mutations detected were: a full mutation (fM) and abnormal methylation in 3 [43 %], mosaic mutations with partial methylation of variable clinical significance in 3 [43%] and a permutation carrier [14%]. The frequency of chromosome and fragile-X abnormalities appears to be within the range in reported surveys (cs 4.8-1.7%, FRAX 2–4%). Limitations of our retrospective study include paucity of behavioral diagnostic information, and a specific clinical criterion for testing. CONCLUSIONS: Twenty-eight percent of chromosome abnormalities detected in our study were subtle; therefore a high resolution cytogenetic study with a scrutiny of 15q11.2q13, 2q37 and Xp23.3 region should be standard practice when the indication is autism. The higher incidence of mosaic fragile-X mutations with partial methylation compared to FRAXA positive population [50% vs 15–40%] suggests that faint bands and variations in the Southern band pattern may occur in autistic patients

    In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice

    Get PDF
    We describe a two-photon microscopy-based method to evaluate the in vivo systemic transport of compounds. This method comprises imaging of the intact liver, kidney and intestine, the main organs responsible for uptake and elimination of xenobiotics and endogenous molecules. The image quality of the acquired movies was sufficient to distinguish subcellular structures like organelles and vesicles. Quantification of the movement of fluorescent dextran and fluorescent cholic acid derivatives in different organs and their sub-compartments over time revealed significant dynamic differences. Calculated half-lives were similar in the capillaries of all investigated organs but differed in the specific sub-compartments, such as parenchymal cells and bile canaliculi of the liver, glomeruli, proximal and distal tubules of the kidney and lymph vessels (lacteals) of the small intestine. Moreover, tools to image immune cells, which can influence transport processes in inflamed tissues, are described. This powerful approach provides new possibilities for the analysis of compound transport in multiple organs and can support physiologically based pharmacokinetic modeling, in order to obtain more precise predictions at the whole body scale

    Investigation of autism and GABA receptor subunit genes in multiple ethnic groups

    Get PDF
    Autism is a neurodevelopmental disorder of complex genetics, characterized by impairment in social interaction and communication, as well as repetitive behavior. Multiple lines of evidence, including alterations in levels of GABA and GABA receptors in autistic patients, indicate that the GABAergic system, which is responsible for synaptic inhibition in the adult brain, may be involved in autism. Previous studies in our lab indicated association of noncoding single nucleotide polymorphisms (SNPs) within a GABA receptor subunit gene on chromosome 4, GABRA4, and interaction between SNPs in GABRA4 and GABRB1 (also on chromosome 4), within Caucasian autism patients. Studies of genetic variation in African-American autism families are rare. Analysis of 557 Caucasian and an independent population of 54 African-American families with 35 SNPs within GABRB1 and GABRA4 strengthened the evidence for involvement of GABRA4 in autism risk in Caucasians (rs17599165, p=0.0015; rs1912960, p=0.0073; and rs17599416, p=0.0040) and gave evidence of significant association in African-Americans (rs2280073, p=0.0287 and rs16859788, p=0.0253). The GABRA4 and GABRB1 interaction was also confirmed in the Caucasian dataset (most significant pair, rs1912960 and rs2351299; p=0.004). Analysis of the subset of families with a positive history of seizure activity in at least one autism patient revealed no association to GABRA4; however, three SNPs within GABRB1 showed significant allelic association; rs2351299 (p=0.0163), rs4482737 (p=0.0339), and rs3832300 (p=0.0253). These results confirmed our earlier findings, indicating GABRA4 and GABRB1 as genes contributing to autism susceptibility, extending the effect to multiple ethnic groups and suggesting seizures as a stratifying phenotype

    Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gamma-band oscillations recorded from human electrophysiological recordings, which may be associated with perceptual binding and neuronal connectivity, have been shown to be altered in people with autism. Transient auditory gamma-band responses, however, have not yet been investigated in autism or in the first-degree relatives of persons with the autism.</p> <p>Methods</p> <p>We measured transient evoked and induced magnetic gamma-band power and inter-trial phase-locking consistency in the magnetoencephalographic recordings of 16 parents of children with autism, 11 adults with autism and 16 control participants. Source space projection was used to separate left and right hemisphere transient gamma-band measures of power and phase-locking.</p> <p>Results</p> <p>Induced gamma-power at 40 Hz was significantly higher in the parent and autism groups than in controls, while evoked gamma-band power was reduced compared to controls. The phase-locking factor, a measure of phase consistency of neuronal responses with external stimuli, was significantly lower in the subjects with autism and the autism parent group, potentially explaining the difference between the evoked and induced power results.</p> <p>Conclusion</p> <p>These findings, especially in first degree relatives, suggest that gamma-band phase consistency and changes in induced versus induced power may be potentially useful endophenotypes for autism, particularly given emerging molecular mechanisms concerning the generation of gamma-band signals.</p
    • …
    corecore