22 research outputs found

    Analysis of eight genes modulating interferon gamma and human genetic susceptibility to tuberculosis: a case-control association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon gamma is a major macrophage-activating cytokine during infection with <it>Mycobacterium tuberculosis</it>, the causative pathogen of tuberculosis, and its role has been well established in animal models and in humans. This cytokine is produced by activated T helper 1 cells, which can best deal with intracellular pathogens such as <it>M. tuberculosis</it>. Based on the hypothesis that genes which regulate interferon gamma may influence tuberculosis susceptibility, we investigated polymorphisms in eight candidate genes.</p> <p>Methods</p> <p>Fifty-four polymorphisms in eight candidate genes were genotyped in over 800 tuberculosis cases and healthy controls in a population-based case-control association study in a South African population. Genotyping methods used included the SNPlex Genotyping System™, capillary electrophoresis of fluorescently labelled PCR products, TaqMan<sup>® </sup>SNP genotyping assays or the amplification mutation refraction system. Single polymorphisms as well as haplotypes of the variants were tested for association with TB using statistical analyses.</p> <p>Results</p> <p>A haplotype in interleukin 12B was nominally associated with tuberculosis (p = 0.02), but after permutation testing, done to assess the significance for the entire analysis, this was not globally significant. In addition a novel allele was found for the interleukin 12B D5S2941 microsatellite.</p> <p>Conclusions</p> <p>This study highlights the importance of using larger sample sizes when attempting validation of previously reported genetic associations. Initial studies may be false positives or may propose a stronger genetic effect than subsequently found to be the case.</p

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Dopamine receptor D3 gene and essential tremor in large series of German, Danish and French patients

    Get PDF
    The genetic causes of essential tremor (ET) seem to be heterogeneous. Recently, ET has been found associated with a functional variant (Ser9Gly) of the dopamine D3 receptor (DRD3), located in the ETM1 locus on chromosome 3q13.3 described for the first time in 1997. We examined this variant in three different populations from Germany, Denmark and France. We undertook an association study of the Ser9Gly variant in 202 cases with a familial history from unrelated families with ET, 97 cases with isolated non-familial ET and 528 healthy controls. In addition, linkage and segregation analyses were carried out in 22 ET families. The distribution of genotypes and allele frequencies showed no significant differences in the whole sample and in a subanalysis of familial and sporadic cases. Age at onset of tremor, tremor duration and tremor severity did not show an association with the genotype. In addition, the DRD3 variant was not found linked to the disease in a subset of informative ET families. We did not find a significant association of the DRD3 variant with ET nor linkage to the DRD3 receptor in German, Danish and French ET patients and families, suggesting that it is unlikely to be a causal factor for ET
    corecore