173 research outputs found

    No evidence that footedness in pheasants influences cognitive performance in tasks assessing colour discrimination and spatial ability

    Get PDF
    The differential specialization of each side of the brain facilitates the parallel processing of information and has been documented in a wide range of animals. Animals that are more lateralized as indicated by consistent preferential limb use are commonly reported to exhibit superior cognitive ability as well as other behavioural advantages.We assayed the lateralization of 135 young pheasants (Phasianus colchicus), indicated by their footedness in a spontaneous stepping task, and related this measure to individual performance in either 3 assays of visual or spatial learning and memory. We found no evidence that pronounced footedness enhances cognitive ability in any of the tasks. We also found no evidence that an intermediate footedness relates to better cognitive performance. This lack of relationship is surprising because previous work revealed that pheasants have a slight population bias towards right footedness, and when released into the wild, individuals with higher degrees of footedness were more likely to die. One explanation for why extreme lateralization is constrained was that it led to poorer cognitive performance, or that optimal cognitive performance was associated with some intermediate level of lateralization. This stabilizing selection could explain the pattern of moderate lateralization that is seen in most non-human species that have been studied. However, we found no evidence in this study to support this explanation

    Immunological assays for chemokine detection in in-vitro culture of CNS cells

    Get PDF
    Herein we review the various methods currently in use for determining the expression of chemokines by CNS cells in vitro. Chemokine detection assays are used in conjuction with one another to provide a comprehensive, biologically relevant assessment of the chemokines which is necessary for correct data interpretation of a specific observed biological effect. The methods described include bioassays for soluble chemokine receptors, RNA extraction, RT-PCR, Real - time quantitative PCR, gene array analysis, northern blot analysis, Ribonuclease Protection assay, Flow cytometry, ELISPOT, western blot analysis, and ELISA. No single method of analysis meets the criteria for a comprehensive, biologically relevant assessment of the chemokines, therefore more than one assay might be necessary for correct data interpretation, a choice that is based on development of a scientific rationale for the method with emphasis on the reliability and relevance of the method

    Prevalence and risk factors for mesh erosion after laparoscopic-assisted sacrocolpopexy

    Get PDF
    The purpose of this study is to identify risk factors for mesh erosion in women undergoing minimally invasive sacrocolpopexy (MISC). We hypothesize that erosion is higher in subjects undergoing concomitant hysterectomy. This is a retrospective cohort study of women who underwent MISC between November 2004 and January 2009. Demographics, operative techniques, and outcomes were abstracted from medical records. Multivariable regression identified odds of erosion. Of 188 MISC procedures 19(10%) had erosions. Erosion was higher in those with total vaginal hysterectomy (TVH) compared to both post-hysterectomy (23% vs. 5%, p = 0.003) and supracervical hysterectomy (SCH) (23% vs. 5%, p = 0.109) groups. In multivariable regression, the odds of erosion for TVH was 5.67 (95% CI: 1.88–17.10) compared to post-hysterectomy. Smoking, the use of collagen-coated mesh, transvaginal dissection, and mesh attachment transvaginally were no longer significant in the multivariable regression model. Based on this study, surgeons should consider supracervical hysterectomy over total vaginal hysterectomy as the procedure of choice in association with MISC unless removal of the cervix is otherwise indicated

    A new short uncemented, proximally fixed anatomic femoral implant with a prominent lateral flare: design rationals and study design of an international clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anatomic short femoral prostheses with a prominent lateral flare have the potential to reduce stress-shielding in the femur through a more physiological stress distribution to the proximal femur. We present the design rationale of a new short uncemented, proximally fixed anatomic femoral implant and the study design of a prospective multi-centre trial to collect long-term patient outcome and radiographic follow up data.</p> <p>Methods</p> <p>A prospective surveillance study (trial registry NCT00208555) in four European centres (UK, Italy, Spain and Germany) with a follow up period of 15 years will be executed. The recruitment target is 200 subjects, patients between the ages of 18 and 70 admitted for primary cementless unilateral THA will be included. The primary objective is to evaluate the five-year survivorship of the new cementless short stem. The secondary objectives of this investigation are to evaluate the long term survivorship and the clinical performance of the implant, the impact on the subjects health related Quality of Life and the affect of the prosthesis on bone mineral density. Peri- and postoperative complications will be registered. Clinical and radiographic evaluation of prosthesis positioning will be done post-operatively and at 3, 6, 12, 24, 60, 120 and 180 months follow up.</p> <p>Discussion</p> <p>Shortening of the distal stem can maximise bone and soft tissue conservation. New stem types have been designed to improve the limitations of traditional implants in primary THA. A new, uncemented femoral short stem is introduced in this paper. A long-term follow up study has been designed to verify stable fixation and to research into the clinical outcome. The results of this trial will be presented as soon as they become available.</p

    Progress and challenges in the vaccine-based treatment of head and neck cancers

    Get PDF
    Head and neck (HN) cancer represents one of the most challenging diseases because the mortality remains high despite advances in early diagnosis and treatment. Although vaccine-based approaches for the treatment of advanced squamous cell carcinoma of the head and neck have achieved limited clinical success, advances in cancer immunology provide a strong foundation and powerful new tools to guide current attempts to develop effective cancer vaccines. This article reviews what has to be rather what has been done in the field for the development of future vaccines in HN tumours

    Reacquisition of the lower temporal bar in sexually dimorphic fossil lizards provides a rare case of convergent evolution

    Get PDF
    Temporal fenestration has long been considered a key character to understand relationships amongst reptiles. In particular, the absence of the lower temporal bar (LTB) is considered one of the defining features of squamates (lizards and snakes). In a re-assessment of the borioteiioid lizard Polyglyphanodon sternbergi (Cretaceous, North America), we detected a heretofore unrecognized ontogenetic series, sexual dimorphism (a rare instance for Mesozoic reptiles), and a complete LTB, a feature only recently recognized for another borioteiioid, Tianyusaurus zhengi (Cretaceous, China). A new phylogenetic analysis (with updates on a quarter of the scorings for P. sternbergi) indicates not only that the LTB was reacquired in squamates, but it happened independently at least twice. An analysis of the functional significance of the LTB using proxies indicates that, unlike for T. zhengi, this structure had no apparent functional advantage in P. sternbergi, and it is better explained as the result of structural constraint release. The observed canalization against a LTB in squamates was broken at some point in the evolution of borioteiioids, whereas never re-occuring in other squamate lineages. This case of convergent evolution involves a mix of both adaptationist and structuralist causes, which is unusual for both living and extinct vertebrates

    Enhanced Functional Recovery in MRL/MpJ Mice after Spinal Cord Dorsal Hemisection

    Get PDF
    Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice
    • …
    corecore