8 research outputs found

    Mapping the Binding between the Tetraspanin Molecule (Sjc23) of Schistosoma japonicum and Human Non-Immune IgG

    Get PDF
    BACKGROUND: Schistosomal parasites can establish parasitization in a human host for decades; evasion of host immunorecognition including surface masking by acquisition of host serum components is one of the strategies explored by the parasites. Parasite molecules anchored on the membrane are the main elements in the interaction. Sjc23, a member of the tetraspanin (TSP) family of Schistosoma japonicum, was previously found to be highly immunogenic and regarded as a vaccine candidate against schistosomiasis. However, studies indicated that immunization with Sjc23 generated rapid antibody responses which were less protective than that with other antigens. The biological function of this membrane-anchored molecule has not been defined after decades of vaccination studies. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we explored affinity pull-down and peptide competition assays to investigate the potential binding between Sjc23 molecule and human non-immune IgG. We determined that Sjc23 could bind human non-immune IgG and the binding was through the interaction of the large extra-cellular domain (LED) of Sjc23 (named Sjc23-LED) with the Fc domain of human IgG. Sjc23 had no affinity to other immunoglobulin types. Affinity precipitation (pull-down assay) in the presence of overlapping peptides further pinpointed to a 9-amino acid motif within Sjc23-LED that mediated the binding to human IgG. CONCLUSION AND SIGNIFICANCE: S. japonicum parasites cloak themselves through interaction with human non-immune IgG, and a member of the tetraspanin family, Sjc23, mediated the acquisition of human IgG via the interaction of a motif of 9 amino acids with the Fc domain of the IgG molecule. The consequence of this interaction will likely benefit parasitism of S. japonicum by evasion of host immune recognition or immunoresponses. This is the first report that an epitope of schistosomal ligand and its immunoglobulin receptor are defined, which provides further evidence of immune evasion strategy adopted by S. japonicum

    Population Structure of Pseudomonas aeruginosa from Five Mediterranean Countries: Evidence for Frequent Recombination and Epidemic Occurrence of CC235

    Get PDF
    Several studies in recent years have provided evidence that Pseudomonas aeruginosa has a non-clonal population structure punctuated by highly successful epidemic clones or clonal complexes. The role of recombination in the diversification of P. aeruginosa clones has been suggested, but not yet demonstrated using multi-locus sequence typing (MLST). Isolates of P. aeruginosa from five Mediterranean countries (n = 141) were subjected to pulsed-field gel electrophoresis (PFGE), serotyping and PCR targeting the virulence genes exoS and exoU. The occurrence of multi-resistance (≥3 antipseudomonal drugs) was analyzed with disk diffusion according to EUCAST. MLST was performed on a subset of strains (n = 110) most of them had a distinct PFGE variant. MLST data were analyzed with Bionumerics 6.0, using minimal spanning tree (MST) as well as eBURST. Measurement of clonality was assessed by the standardized index of association (IAS). Evidence of recombination was estimated by ClonalFrame as well as SplitsTree4.0. The MST analysis connected 70 sequence types, among which ST235 was by far the most common. ST235 was very frequently associated with the O11 serotype, and frequently displayed multi-resistance and the virulence genotype exoS−/exoU+. ClonalFrame linked several groups previously identified by eBURST and MST, and provided insight to the evolutionary events occurring in the population; the recombination/mutation ratio was found to be 8.4. A Neighbor-Net analysis based on the concatenated sequences revealed a complex network, providing evidence of frequent recombination. The index of association when all the strains were considered indicated a freely recombining population. P. aeruginosa isolates from the Mediterranean countries display an epidemic population structure, particularly dominated by ST235-O11, which has earlier also been coupled to the spread of ß-lactamases in many countries

    Differential antigen-stimulated proliferation of human mononuclear cells by recombinant Schistosoma japonicum antigens in a Chinese population

    No full text
    Peripheral blood mononuclear cells (PBMC) from 117 individuals living on two islands in an area (Dongting Lake) endemic for schistosomiasis japonica in China, and 15 control individuals from a non-endemic area of China, were assessed for antigen-stimulated proliferation against five recombinant Schistosoma japonicum antigens of recognized interest in the development of immunity to schistosomiasis. Two recombinant antigens, paramyosin and 28-kD glutathione-S-transferase, stimulated cellular proliferation (stimulation index ≥ 3.0) in 38.5% and 42.5% of subjects, respectively, a level similar to that induced by a soluble whole parasite extract (51.3%). In contrast, three other recombinant antigens tested—a fatty acid binding protein, 22-kD tegumental membrane-associated antigen, and glyceraldehyde-3-phosphate dehydrogenase—stimulated PBMC proliferation in only 3–8% of subjects. Moreover, we also identified a positive association between the degree of exposure, and cellular proliferation following stimulation with recombinant paramyosin or whole parasite extract. Highly significant differences in antigen-stimulated proliferation were also observed between the two islands, Niangashan and Qingshan. The whole parasite extract stimulated proliferation in 90% of subjects from Niangashan island compared with only 42.1% of subjects from Qingshan island (χ2 = 16.88, P = 0.00004), while glutathione-S-transferase stimulated proliferation in 77.3% of subjects from Niangashan island compared with only 34.7% of subjects from Qingshan island (χ2 = 13.09, P = 0.003). A similar, but not significant, trend was observed for paramyosin and the fatty-acid binding protein. The identification of differential cellular proliferative responses to specific schistosome antigens within an infected human population may have important practical implications for vaccine development against schistosomiasis japonica

    Schistosomiasis vaccine development: progress and prospects

    No full text
    The undisputed, worldwide success of chemotherapy notwithstanding, schistosomiasis continues to defy control efforts in as much rapid reinfection demands repeated treatment, sometimes as often as once a year. There is thus a need for a complementary tool with effect for the longer term, notably a vaccine. International efforts in this direction have been ongoing for several decades but, until the recombinant DNA techniques were introduced, antigen production remained an unsurmountable bottleneck. Although animal experiments have been highly productive and are still much needed, they probably do not reflect the human situation adequately and real progress can not be expected until more is known about human immune responses to schistosome infection. It is well-known that irradiated cercariae consistently produce high levels of protection in experimental animals but, for various reasons, this proof of principle cannot be directly exploited. Research has instead been focussed on the identification and testing of specific schistosome antigens. This work has been quite successful and is already at the stage where clinical trials are called for. Preliminary results from coordinated in vitro laboratory and field epidemiological studies regarding the protective potential of several antigens support the initiation of such trials. A series of meetings, organized earlier this year in Cairo, Egypt, reviewed recent progress, selecteded suitable vaccine candidates and made firm recommendations for future action including pledging support for large-scale production according to good manufacturing practice (GMP) and Phase I trials. Scientists at the American Centers for Disease Control and Prevention (CDC) have drawn up a detailed research plan. The major financial support will come from USAID, Cairo, which has established a scientific advisory group of Egyptian scientists and representatives from current and previous international donors such as WHO, NIAID, the European Union and the Edna McConnell Clark Foundation
    corecore