1,332 research outputs found

    Proteins identification of wheat-rye translocation lines by MALDI-TOF-TOF mass spectrometry and ESI-QTOF/MS

    Get PDF
    OBJECTIVE: To examine the relationship between Timed Up and Go (TUG) performance, verbal executive function (EF) performance, and quality-of-life (QOL) measures in Parkinson's disease (PD). DESIGN: Cross-sectional. SETTING: Sixteen movement disorder centers from across the United States. PARTICIPANTS: Patients with PD (N=1964). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: TUG test, immediate and delayed 5-word recall, verbal fluency, PD QOL Questionnaire. RESULTS: TUG performance and verbal EF performance were significantly associated with, and predictors of, QOL measures, having the greatest association and predictability with the mobility domain of the QOL measures. CONCLUSIONS: The TUG test and verbal EF tests have QOL correlates, making the combined evaluation of mobility, cognitive, and QOL decline a potential examination tool to evaluate the sequelae of PD

    Application of Quenching and Partitioning Processing to Medium Mn Steel

    Get PDF
    The present work analyzes the application of quenching and partitioning processing to medium Mn steel to obtain a new type of ultra-high-strength multiphase medium Mn steel. The selection of the quench temperature makes it possible to vary the ultimate tensile strength within a range of 500 MPa. The processing leads to low-carbon lath martensite matrix with a controlled volume fraction of retained austenite.open112731sciescopu

    Feasibility of silica-hybridized collagen hydrogels as three-dimensional cell matrices for hard tissue engineering

    Get PDF
    Exploiting hydrogels for the cultivation of stem cells, aiming to provide them with physico-chemical cues suitable for osteogenesis, is a critical demand for bone engineering. Here, we developed hybrid compositions of collagen and silica into hydrogels via a simple sol-gel process. The physico-chemical and mechanical properties, degradation behavior, and bone-bioactivity were characterized in-depth; furthermore, the in vitro mesenchymal stem cell growth and osteogenic differentiation behaviors within the 3D hybrid gel matrices were communicated for the first time. The hydrolyzed and condensed silica phase enabled chemical links with the collagen fibrils to form networked hybrid gels. The hybrid gels showed improved chemical stability and greater resistance to enzymatic degradation. The in vitro apatite-forming ability was enhanced by the hybrid composition. The viscoelastic mechanical properties of the hybrid gels were significantly improved in terms of the deformation resistance to an applied load and the modulus values under a dynamic oscillation. Mesenchymal stem cells adhered well to the hybrid networks and proliferated actively with substantial cytoskeletal extensions within the gel matrices. Of note, the hybrid gels substantially reduced the cell-mediated gel contraction behaviors, possibly due to the stiffer networks and higher resistance to cell-mediated degradation. Furthermore, the osteogenic differentiation of cells, including the expression of bone-associated genes and protein, was significantly upregulated within the hybrid gel matrices. Together with the physico-chemical and mechanical properties, the cellular behaviors observed within 3D gel matrices, being different from the previous approaches reported on 2D substrates, provide new information on the feasibility and usefulness of the silica-collagen system for stem cell culture and tissue engineering of hard tissues

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection

    Get PDF
    Pandemics in poultry caused by the highly pathogenic avian influenza (HPAI) A virus occur too frequently globally, and there is growing concern about the HPAI A virus due to the possibility of a pandemic among humans. Thus, it is important to develop a vaccine against HPAI suitable for both humans and animals. Various approaches are underway to develop such vaccines. In particular, an edible vaccine would be a convenient way to vaccinate poultry because of the behaviour of the animals. However, an edible vaccine is still not available. In this study, we developed a strategy of effective vaccination of mice by the oral administration of transgenic Arabidopsis plants (HA-TG) expressing haemagglutinin (HA) in the endoplasmic reticulum (ER). Expression of HA in the ER resulted in its high-level accumulation, N-glycosylation, protection from proteolytic degradation and long-term stability. Oral administration of HA-TG with saponin elicited high levels of HA-specific systemic IgG and mucosal IgA responses in mice, which resulted in protection against a lethal influenza virus infection with attenuated inflammatory symptoms. Based on these results, we propose that oral administration of freeze-dried leaf powders from transgenic plants expressing HA in the ER together with saponin is an attractive strategy for vaccination against influenza A virus.X111411Ysciescopu

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome

    Control of magnetic anisotropy by orbital hybridization in (La0.67Sr0.33MnO3)n/(SrTiO3)n superlattice

    Full text link
    The asymmetry of chemical nature at the hetero-structural interface offers an unique opportunity to design desirable electronic structure by controlling charge transfer and orbital hybridization across the interface. However, the control of hetero-interface remains a daunting task. Here, we report the modulation of interfacial coupling of (La0.67Sr0.33MnO3)n/(SrTiO3)n superlattices by manipulating the periodic thickness with n unit cells of SrTiO3 and n unit cells La0.67Sr0.33MnO3. The easy axis of magnetic anisotropy rotates from in-plane (n = 10) to out-of-plane (n = 2) orientation at 150 K. Transmission electron microscopy reveals enlarged tetragonal ratio > 1 with breaking of volume conservation around the (La0.67Sr0.33MnO3)n/(SrTiO3)n interface, and electronic charge transfer from Mn to Ti 3d orbitals across the interface. Orbital hybridization accompanying the charge transfer results in preferred occupancy of 3d3z2-r2 orbital at the interface, which induces a stronger electronic hopping integral along the out-of-plane direction and corresponding out-of-plane magnetic easy axis for n = 2. We demonstrate that interfacial orbital hybridization in superlattices of strongly correlated oxides may be a promising approach to tailor electronic and magnetic properties in device applications

    Fluids in cosmology

    Full text link
    We review the role of fluids in cosmology by first introducing them in General Relativity and then by applying them to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book "Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment". Version 2: typos corrected and references expande

    Studies on the interaction of the carbohydrate binding module 3 from the Clostridium thermocellum CipA scaffolding protein with cellulose and paper fibres

    Get PDF
    The adsorption of a carbohydrate binding module (CBM3) from the Clostridium thermocellum scaffolding protein (CipA) to cellulose was analysed in this work. The effect of CBM-PEG on the drainability of E. globulus and P. sylvestris pulps and on the physical properties of the respective papersheets was also studied. The CBM binding to cellulose is often described as “irreversible”, but this classification does not fully characterize this interaction. Indeed, the results obtained demonstrate that, although the adsorption on cellulose is rather stable, CBM inter-fibre mobility may be observed. The results also showed that the CBM-PEG conjugate improves the drainability of E. globulus and P. sylvestris pulps without affecting the physical properties of the papersheets.This research was supported by Fundacao para a Ciencia e a Tecnologia under grant POCTI/BIO/45356/2002
    corecore