251 research outputs found

    Dirac Leptogenesis with a Non-anomalous U(1)′U(1)^{\prime} Family Symmetry

    Full text link
    We propose a model for Dirac leptogenesis based on a non-anomalous U(1)′U(1)^{\prime} gauged family symmetry. The anomaly cancellation conditions are satisfied with no new chiral fermions other than the three right-handed neutrinos, giving rise to stringent constraints among the charges. Realistic masses and mixing angles are obtained for all fermions. The model predicts neutrinos of the Dirac type with naturally suppressed masses. Dirac leptogenesis is achieved through the decay of the flavon fields. The cascade decays of the vector-like heavy fermions in the Froggatt-Nielsen mechanism play a crucial role in the separation of the primodial lepton numbers. We find that a large region of parameter space of the model gives rise to a sufficient cosmological baryon number asymmetry through Dirac leptogenesis.Comment: 8 pages, 8 figures, version to appear in JHE

    Aspects of structural health and condition monitoring of offshore wind turbines

    Get PDF
    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector

    Radiative contribution to neutrino masses and mixing in μν\mu\nuSSM

    Full text link
    In an extension of the minimal supersymmetric standard model (popularly known as the μν\mu\nuSSM), three right handed neutrino superfields are introduced to solve the μ\mu-problem and to accommodate the non-vanishing neutrino masses and mixing. Neutrino masses at the tree level are generated through R−R-parity violation and seesaw mechanism. We have analyzed the full effect of one-loop contributions to the neutrino mass matrix. We show that the current three flavour global neutrino data can be accommodated in the μν\mu\nuSSM, for both the tree level and one-loop corrected analyses. We find that it is relatively easier to accommodate the normal hierarchical mass pattern compared to the inverted hierarchical or quasi-degenerate case, when one-loop corrections are included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other minor changes, references adde

    Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry

    Full text link
    It is well known that R-symmetric models dramatically alleviate the SUSY flavor and CP problems. We study particular modifications of existing R-symmetric models which share the solution to the above problems, and have interesting consequences for electroweak baryogenesis and the Dark Matter (DM) content of the universe. In particular, we find that it is naturally possible to have a strongly first-order electroweak phase transition while simultaneously relaxing the tension with EDM experiments. The R-symmetry (and its small breaking) implies that the gauginos (and the neutralino LSP) are pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role in making the electroweak phase transition strongly first-order. The pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac particle during freeze-out, but like a Majorana particle for annihilation today and in scattering against nuclei, thus being consistent with current constraints. Assuming a standard cosmology, it is possible to simultaneously have a strongly first-order phase transition conducive to baryogenesis and have the LSP provide the full DM relic abundance, in part of the allowed parameter space. However, other possibilities for DM also exist, which are discussed. It is expected that upcoming direct DM searches as well as neutrino signals from DM annihilation in the Sun will be sensitive to this class of models. Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure

    B-L Cosmic Strings in Heterotic Standard Models

    Full text link
    E_{8} X E_{8} heterotic string and M-theory, when compactified on smooth Calabi-Yau manifolds with SU(4) vector bundles, can give rise to softly broken N=1 supersymmetric theories with the exact matter spectrum of the MSSM, including three right-handed neutrinos and one Higgs-Higgs conjugate pair of supermultiplets. These vacua have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge group of the standard model augmented by an additional gauged U(1)_{B-L}. Their minimal content requires that the B-L symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed sneutrino. The soft supersymmetry breaking operators can induce radiative breaking of the B-L gauge symmetry with an acceptable B-L/electroweak hierarchy. In this paper, it is shown that U(1)_{B-L} cosmic strings occur in this context, potentially with both bosonic and fermionic superconductivity. We present a numerical analysis that demonstrates that boson condensates can, in principle, form for theories of this type. However, the weak Yukawa and gauge couplings of the right-handed sneutrino suggests that bosonic superconductivity will not occur in the simplest vacua in this context. The electroweak phase transition also disallows fermion superconductivity, although substantial bound state fermion currents can exist.Comment: 41 pages, 5 figure

    Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model

    Full text link
    We investigate signatures of the minimal supersymmetric inverse seesaw model at the large hadron collider (LHC) with three isolated leptons and large missing energy (3\ell + \mET or 2\ell + 1\tau + \mET, with \ell=e,\mu) in the final state. This signal has its origin in the decay of chargino-neutralino (\chpm1\ntrl2) pair, produced in pp collisions. The two body decays of the lighter chargino into a charged lepton and a singlet sneutrino has a characteristic decay pattern which is correlated with the observed large atmospheric neutrino mixing angle. This correlation is potentially observable at the LHC by looking at the ratios of cross sections of the trilepton + \mET channels in certain flavour specific modes. We show that even after considering possible leading standard model backgrounds these final states can lead to reasonable discovery significance at the LHC with both 7 TeV and 14 TeV center-of-mass energy.Comment: 28 pages, 9 .eps figures. 3 new figures and discussions on LHC observables added, minor modifications in text and in the abstract, 23 new references added, matches with the published version in JHE

    Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks

    Full text link
    It is argued that experimental constraints on theories of asymmetric dark matter (ADM) almost certainly require that the DM be part of a richer hidden sector of interacting states of comparable mass or lighter. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density must be removed in order to explain the observed relationship ΩB∼ΩDM\Omega_B\sim\Omega_{DM} via the DM asymmetry. Demanding the efficient annihilation of the symmetric component leads to a tension with experimental limits if the annihilation is directly to Standard Model (SM) degrees of freedom. A comprehensive effective operator analysis of the model independent constraints on ADM from direct detection experiments and LHC monojet searches is presented. Notably, the limits obtained essentially exclude models of ADM with mass 1GeV≲mDM≲\lesssim m_{DM} \lesssim 100GeV annihilating to SM quarks via heavy mediator states. This motivates the study of portal interactions between the dark and SM sectors mediated by light states. Resonances and threshold effects involving the new light states are shown to be important for determining the exclusion limits.Comment: 18+6 pages, 18 figures. v2: version accepted for publicatio

    Setting priorities in health care organizations: criteria, processes, and parameters of success

    Get PDF
    BACKGROUND: Hospitals and regional health authorities must set priorities in the face of resource constraints. Decision-makers seek practical ways to set priorities fairly in strategic planning, but find limited guidance from the literature. Very little has been reported from the perspective of Board members and senior managers about what criteria, processes and parameters of success they would use to set priorities fairly. DISCUSSION: We facilitated workshops for board members and senior leadership at three health care organizations to assist them in developing a strategy for fair priority setting. Workshop participants identified 8 priority setting criteria, 10 key priority setting process elements, and 6 parameters of success that they would use to set priorities in their organizations. Decision-makers in other organizations can draw lessons from these findings to enhance the fairness of their priority setting decision-making. SUMMARY: Lessons learned in three workshops fill an important gap in the literature about what criteria, processes, and parameters of success Board members and senior managers would use to set priorities fairly

    Spontaneous R-Parity Violation, A4A_4 Flavor Symmetry and Tribimaximal Mixing

    Full text link
    We explore the possibility of spontaneous R parity violation in the context of A4A_4 flavor symmetry. Our model contains SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet matter chiral superfields which are arranged as triplet of A4A_4 and as well as few additional Higgs chiral superfields which are singlet under MSSM gauge group and belong to triplet and singlet representation under the A4A_4 flavor symmetry. R parity is broken spontaneously by the vacuum expectation values of the different sneutrino fields and hence we have neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in our model, in addition to the standard model neutrino- gauge singlet neutrino, gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we have an extended neutral fermion mass matrix. We explore the low energy neutrino mass matrix for our model and point out that with some specific constraints between the sneutrino vacuum expectation values as well as the MSSM gauge singlet Higgs vacuum expectation values, the low energy neutrino mass matrix will lead to a tribimaximal mixing matrix. We also analyze the potential minimization for our model and show that one can realize a higher vacuum expectation value of the SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet sneutrino fields even when the other sneutrino vacuum expectation values are extremely small or even zero.Comment: 18 page

    Phylogeography of Recently Emerged DENV-2 in Southern Viet Nam

    Get PDF
    Revealing the dispersal of dengue viruses (DENV) in time and space is central to understanding their epidemiology. However, the processes that shape DENV transmission patterns at the scale of local populations are not well understood, particularly the impact of such factors as human population movement and urbanization. Herein, we investigated trends in the spatial dynamics of DENV-2 transmission in the highly endemic setting of southern Viet Nam. Through a phylogeographic analysis of 168 full-length DENV-2 genome sequences obtained from hospitalized dengue cases from 10 provinces in southern Viet Nam, we reveal substantial genetic diversity in both urban and rural areas, with multiple lineages identified in individual provinces within a single season, and indicative of frequent viral migration among communities. Focusing on the recently introduced Asian I genotype, we observed particularly high rates of viral exchange between adjacent geographic areas, and between Ho Chi Minh City, the primary urban center of this region, and populations across southern Viet Nam. Within Ho Chi Minh City, patterns of DENV movement appear consistent with a gravity model of virus dispersal, with viruses traveling across a gradient of population density. Overall, our analysis suggests that Ho Chi Minh City may act as a source population for the dispersal of DENV across southern Viet Nam, and provides further evidence that urban areas of Southeast Asia play a primary role in DENV transmission. However, these data also indicate that more rural areas are also capable of maintaining virus populations and hence fueling DENV evolution over multiple seasons
    • …
    corecore