28 research outputs found

    The extraordinary evolutionary history of the reticuloendotheliosis viruses

    Get PDF
    The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events

    The novel homozygous KCNJ10 c.986T>C (p.(Leu329Pro)) variant is pathogenic for the SeSAME/EAST homologue in Malinois dogs.

    Get PDF
    SeSAME/EAST syndrome is a multisystemic disorder in humans, characterised by seizures, sensorineural deafness, ataxia, developmental delay and electrolyte imbalance. It is exclusively caused by homozygous or compound heterozygous variations in the KCNJ10 gene. Here we describe a similar syndrome in two families belonging to the Malinois dog breed, based on clinical, neurological, electrodiagnostic and histopathological examination. Genetic analysis detected a novel pathogenic KCNJ10 c.986T>C (p.(Leu329Pro)) variant that is inherited in an autosomal recessive way. This variant has an allele frequency of 2.9% in the Belgian Malinois population, but is not found in closely related dog breeds or in dog breeds where similar symptoms have been already described. The canine phenotype is remarkably similar to humans, including ataxia and seizures. In addition, in half of the dogs clinical and electrophysiological signs of neuromyotonia were observed. Because there is currently no cure and treatment is nonspecific and unsatisfactory, this canine translational model could be used for further elucidating the genotype/phenotype correlation of this monogenic multisystem disorder and as an excellent intermediate step for drug safety testing and efficacy evaluations before initiating human studies

    Ants defend coffee from berry borer colonization

    Full text link
    Ants frequently prevent herbivores from damaging plants. In agroecosystems they may provide pest control services, although their contributions are not always appreciated. Here we compared the ability of eight ant species to prevent the coffee berry borer from colonizing coffee berries with a field exclusion experiment. We removed ants from one branch (exclusion) and left ants to forage on a second branch (control) before releasing 20 berry borers on each branch. After 24 h, six of eight species had significantly reduced the number of berries bored by the berry borer compared to exclusion treatment branches. While the number of berries per branch was a significant covariate explaining the number of berries bored, ant activity (that varied greatly among species) was not a significant factor in models. This study is the first field experiment to provide evidence that a diverse group of ant species limit the berry borer from colonizing coffee berries. © 2013 International Organization for Biological Control (IOBC)

    Platform for Plasmodium vivax vaccine discovery and development

    Full text link
    Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development

    A research agenda for malaria eradication: basic science and enabling technologies.

    Get PDF
    Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences
    corecore