1,291 research outputs found
Evaluation of the late life disability instrument in the lifestyle interventions and independence for elders pilot (LIFE-P) study
Background: The late life disability instrument (LLDI) was developed to assess limitations in instrumental and management roles using a small and restricted sample. In this paper we examine the measurement properties of the LLDI using data from the Lifestyle Interventions and Independence for Elders Pilot (LIFE-P) study.Methods: LIFE-P participants, aged 70-89 years, were at elevated risk of disability. The 424 participants were enrolled at the Cooper Institute, Stanford University, University of Pittsburgh, and Wake Forest University. Physical activity and successful aging health education interventions were compared after 12-months of follow-up. Using factor analysis, we determined whether the LLDI's factor structure was comparable with that reported previously. We further examined how each item related to measured disability using item response theory (IRT).Results: The factor structure for the limitation domain within the LLDI in the LIFE-P study did not corroborate previous findings. However, the factor structure using the abbreviated version was supported. Social and personal role factors were identified. IRT analysis revealed that each item in the social role factor provided a similar level of information, whereas the items in the personal role factor tended to provide different levels of information.Conclusions: Within the context of community-based clinical intervention research in aged populations, an abbreviated version of the LLDI performed better than the full 16-item version. In addition, the personal subscale would benefit from additional research using IRT.Trial registration: The protocol of LIFE-P is consistent with the principles of the Declaration of Helsinki and is registered at http://www.ClinicalTrials.gov (registration # NCT00116194). © 2010 Hsu et al; licensee BioMed Central Ltd
Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice
Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several
hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA
Warped Riemannian metrics for location-scale models
The present paper shows that warped Riemannian metrics, a class of Riemannian
metrics which play a prominent role in Riemannian geometry, are also of
fundamental importance in information geometry. Precisely, the paper features a
new theorem, which states that the Rao-Fisher information metric of any
location-scale model, defined on a Riemannian manifold, is a warped Riemannian
metric, whenever this model is invariant under the action of some Lie group.
This theorem is a valuable tool in finding the expression of the Rao-Fisher
information metric of location-scale models defined on high-dimensional
Riemannian manifolds. Indeed, a warped Riemannian metric is fully determined by
only two functions of a single variable, irrespective of the dimension of the
underlying Riemannian manifold. Starting from this theorem, several original
contributions are made. The expression of the Rao-Fisher information metric of
the Riemannian Gaussian model is provided, for the first time in the
literature. A generalised definition of the Mahalanobis distance is introduced,
which is applicable to any location-scale model defined on a Riemannian
manifold. The solution of the geodesic equation is obtained, for any Rao-Fisher
information metric defined in terms of warped Riemannian metrics. Finally,
using a mixture of analytical and numerical computations, it is shown that the
parameter space of the von Mises-Fisher model of -dimensional directional
data, when equipped with its Rao-Fisher information metric, becomes a Hadamard
manifold, a simply-connected complete Riemannian manifold of negative sectional
curvature, for . Hopefully, in upcoming work, this will be
proved for any value of .Comment: first version, before submissio
Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++
Computational efforts to identify functional elements within genomes leverage comparative sequence information by looking for regions that exhibit evidence of selective constraint. One way of detecting constrained elements is to follow a bottom-up approach by computing constraint scores for individual positions of a multiple alignment and then defining constrained elements as segments of contiguous, highly scoring nucleotide positions. Here we present GERP++, a new tool that uses maximum likelihood evolutionary rate estimation for position-specific scoring and, in contrast to previous bottom-up methods, a novel dynamic programming approach to subsequently define constrained elements. GERP++ evaluates a richer set of candidate element breakpoints and ranks them based on statistical significance, eliminating the need for biased heuristic extension techniques. Using GERP++ we identify over 1.3 million constrained elements spanning over 7% of the human genome. We predict a higher fraction than earlier estimates largely due to the annotation of longer constrained elements, which improves one to one correspondence between predicted elements with known functional sequences. GERP++ is an efficient and effective tool to provide both nucleotide- and element-level constraint scores within deep multiple sequence alignments
CF2 Represses Actin 88F Gene Expression and Maintains Filament Balance during Indirect Flight Muscle Development in Drosophila
The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM), we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F), effects on levels of transcripts of myosin heavy chain (mhc) appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size
Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.
Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses
The effect of distractions in the operating room during endourological procedures
Contains fulltext :
98421.pdf (publisher's version ) (Closed access)BACKGROUND: Professionals working in the operating room (OR) are subject to various distractions that can be detrimental to their task performance and the quality of their work. This study aimed to quantify the frequency, nature, and effect on performance of (potentially) distracting events occurring during endourological procedures and additionally explored urologists' and residents' perspectives on experienced ill effects due to distracting factors. METHODS: First, observational data were collected prospectively during endourological procedures in one OR of a teaching hospital. A seven-point ordinal scale was used to measure the level of observed interference with the main task of the surgical team. Second, semistructured interviews were conducted with eight urologists and seven urology residents in two hospitals to obtain their perspectives on the impact of distracting factors. RESULTS: Seventy-eight procedures were observed. A median of 20 distracting events occurred per procedure, which corresponds to an overall rate of one distracting event every 1.8 min. Equipment problems and procedure-related and medically irrelevant communication were the most frequently observed causes of interruptions and identified as the most distracting factors in the interviews. Occurrence of distracting factors in difficult situations requiring high levels of concentration was perceived by all interviewees as disturbing and negatively impacting performance. The majority of interviewees (13/15) thought distracting factors impacted more strongly on residents' compared to urologists' performance due to their different levels of experience. CONCLUSION: Distracting events occur frequently in the OR. Equipment problems and communication, the latter both procedure-related and medically irrelevant, have the largest impact on the sterile team and regularly interrupt procedures. Distracting stimuli can influence performance negatively and should therefore be minimized. Further research is required to determine the direct effect of distraction on patient safety
Measurement of Exclusive B Decays to Final States Containing a Charmed Baryon
Using data collected by the CLEO detector in the Upsilon(4S) region, we
report new measurements of the exclusive decays of B mesons into final states
of the type Lambda_c^+ p-bar n(pi), where n=0,1,2,3. We find signals in modes
with one, two and three pions and an upper limit for the two body decay
Lambda_c^+ pbar. We also make the first measurements of exclusive decays of B
mesons to Sigma_c p-bar n(pi), where n=0,1,2. We find signals in modes with one
and two pions and an upper limit for the two body decay Sigma_c p-bar.
Measurements of these modes shed light on the mechanisms involved in B decays
to baryons.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Measurement of the Masses and Widths of the Sigma_c^++ and Sigma_c^0 Charmed Baryons
Using data recorded by the CLEO II and CLEO II.V detector configurations at
CESR, we report new measurements of the masses of the Sigma_c^{++} and
Sigma_c^0 charmed baryons, and the first measurements of their intrinsic
widths. We find M(Sigma_c^{++}) - M(Lambda_c^+) = 167.4 +- 0.1 +- 0.2 MeV,
Gamma(Sigma_c^{++}) = 2.3 +- 0.2 +- 0.3 MeV, and M(Sigma_c^0) - M(Lambda_c^+) =
167.2 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^0) = 2.5 +- 0.2 +- 0.3 MeV, where the
uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid
Communications. Reference [13] correcte
- …