46 research outputs found

    A prospective study of mental health care for comorbid depressed mood in older adults with painful osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comorbid depression is common among adults with painful osteoarthritis (OA). We evaluated the relationship between depressed mood and receipt of mental health (MH) care services.</p> <p>Methods</p> <p>In a cohort with OA, annual interviews assessed comorbidity, arthritis severity, and MH (SF-36 mental health score). Surveys were linked to administrative health databases to identify mental health-related visits to physicians in the two years following the baseline interview (1996-98). Prescriptions for anti-depressants were ascertained for participants aged 65+ years (eligible for drug benefits). The relationship between MH scores and MH-related physician visits was assessed using zero-inflated negative binomial regression, adjusting for confounders. For those aged 65+ years, logistic regression examined the probability of receiving <it>any </it>MH-related care (physician visit or anti-depressant prescription).</p> <p>Results</p> <p>Analyses were based on 2,005 (90.1%) individuals (mean age 70.8 years). Of 576 (28.7%) with probable depression (MH score < 60/100), 42.5% experienced one or more MH-related physician visits during follow-up. The likelihood of a physician visit was associated with sex (adjusted OR women vs. men = 5.87, p = 0.005) and MH score (adjusted OR per 10-point decrease in MH score = 1.63, p = 0.003). Among those aged 65+, 56.7% with probable depression received <it>any </it>MH care. The likelihood of receiving <it>any </it>MH care exhibited a significant interaction between MH score and self-reported health status (p = 0.0009); with good general health, worsening MH was associated with increased likelihood of MH care; as general health declined, this effect was attenuated.</p> <p>Conclusions</p> <p>Among older adults with painful OA, more than one-quarter had depressed mood, but almost half received no mental health care, suggesting a care gap.</p

    Regulation of type 1 diabetes development and B-cell activation in nonobese diabetic mice by early life exposure to a diabetogenic environment

    Get PDF
    Microbes, including viruses, influence type 1 diabetes (T1D) development, but many such influences remain undefined. Previous work on underlying immune mechanisms has focussed on cytokines and T cells. Here, we compared two nonobese diabetic (NOD) mouse colonies, NODlow and NODhigh, differing markedly in their cumulative T1D incidence (22% vs. 90% by 30 weeks in females). NODhigh mice harbored more complex intestinal microbiota, including several pathobionts; both colonies harbored segmented filamentous bacteria (SFB), thought to suppress T1D. Young NODhigh females had increased B-cell activation in their mesenteric lymph nodes. These phenotypes were transmissible. Co-housing of NODlow with NODhigh mice after weaning did not change T1D development, but T1D incidence was increased in female offspring of co-housed NODlow mice, which were exposed to the NODhigh environment both before and after weaning. These offspring also acquired microbiota and B-cell activation approaching those of NODhigh mice. In NODlow females, the low rate of T1D was unaffected by cyclophosphamide but increased by PD-L1 blockade. Thus, environmental exposures that are innocuous later in life may promote T1D progression if acquired early during immune development, possibly by altering B-cell activation and/or PD-L1 function. Moreover, T1D suppression in NOD mice by SFB may depend on the presence of other microbial influences. The complexity of microbial immune regulation revealed in this murine model may also be relevant to the environmental regulation of human T1D

    Fibroblast cell-based therapy prevents induction of alopecia areata in an experimental model

    Get PDF
    YesAlopecia areata (AA) is an autoimmune hair loss disease with infiltration of proinflammatory cells into hair follicles. Current therapeutic regimens are unsatisfactory mainly because of the potential for side effects and/or limited efficacy. Here we report that cultured, transduced fibroblasts, which express the immunomodulatory molecule indoleamine 2,3-dioxygenase (IDO), can be applied to prevent hair loss in an experimental AA model. A single intraperitoneal (IP) injection of IDO-expressing primary dermal fibroblasts was given to C3H/HeJ mice at the time of AA induction. While 60–70% of mice that received either control fibroblasts or vehicle injections developed extensive AA, none of the IDO-expressing fibroblast-treated mice showed new hair loss up to 20 weeks post injection. IDO cell therapy significantly reduced infiltration of CD4+ and CD8+ T cells into hair follicles and resulted in decreased expression of TNF-α, IFN-γ and IL-17 in the skin. Skin draining lymph nodes of IDO fibroblast-treated mice were significantly smaller, with more CD4+ CD25+ FoxP3+ regulatory T cells and fewer Th17 cells than those of control fibroblast and vehicle-injected mice. These findings indicate that IP injected IDO-expressing dermal fibroblasts can control inflammation and thereby prevent AA hair loss.Canadian Institutes of Health Researches (Funding Reference Number: 134214 and 136945)

    American Trypanosomiasis

    No full text
    corecore