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Fibroblast cell-based therapy prevents
induction of alopecia areata
in an experimental model

Reza B Jalili1, Ruhangiz T Kilani1, Yunyuan Li1,
Mohsen Khosravi-maharlooie1, Layla Nabai1,
Eddy Hsi Chun Wang2, Kevin J. McElwee2, and Aziz Ghahary1

Abstract
Alopecia areata (AA) is an autoimmune hair loss disease with infiltration of proinflammatory cells into hair follicles. Current
therapeutic regimens are unsatisfactory mainly because of the potential for side effects and/or limited efficacy. Here we report
that cultured, transduced fibroblasts, which express the immunomodulatory molecule indoleamine 2,3-dioxygenase (IDO),
can be applied to prevent hair loss in an experimental AA model. A single intraperitoneal (IP) injection of IDO-expressing
primary dermal fibroblasts was given to C3H/HeJ mice at the time of AA induction. While 60–70% of mice that received either
control fibroblasts or vehicle injections developed extensive AA, none of the IDO-expressing fibroblast-treated mice showed
new hair loss up to 20 weeks post injection. IDO cell therapy significantly reduced infiltration of CD4þ and CD8þ T cells into
hair follicles and resulted in decreased expression of TNF-a, IFN-g and IL-17 in the skin. Skin draining lymph nodes of IDO
fibroblast-treated mice were significantly smaller, with more CD4þ CD25þ FoxP3þ regulatory T cells and fewer Th17 cells
than those of control fibroblast and vehicle-injected mice. These findings indicate that IP injected IDO-expressing dermal
fibroblasts can control inflammation and thereby prevent AA hair loss.
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Introduction

Alopecia areata (AA) is a common autoimmune disorder

affecting millions of people worldwide. It manifests as a

sudden non-scarring loss of hair without visible skin inflam-

mation1,2. Alopecia usually starts abruptly with one or mul-

tiple patches of hair loss that usually enlarge in a centrifugal

pattern. The entire scalp (alopecia totalis) or body (alopecia

universalis) can be affected. Although the exact etiology and

pathogenesis of AA are not well understood, loss of immune

privilege in hair follicles (HFs) is believed to play a key role

in the pathogenesis of AA3. The histopathological finding of

peri- and intra-follicular infiltration of CD4þ and CD8þ

lymphocytes, targeting anagen stage HFs, suggests T cell

involvement in the pathogenesis of AA. Additionally, the

expression of a wide array of proinflammatory cytokines and

molecules is associated with collapse of immune privilege in

HFs and AA development4,5.

The natural history of AA is unpredictable, which con-

tributes to the devastating nature of the condition and the

serious impact it can have on the quality of life of the

patients. No cure currently exists for AA, and available treat-

ments are mainly unsatisfactory either because of lack of

efficacy or due to serious side effect potential6,7. Addition-

ally, none of the currently available therapies can prevent

future relapse of the disease. Thus, development of an effec-

tive, long-lasting treatment is highly desirable for patients

suffering from AA.

Our group has recently developed and successfully

applied a novel fibroblast cell-based therapy for the treat-

ment of experimental autoimmune type 1 diabetes8,9. We
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showed that intraperitoneal (IP) injection of dermal fibro-

blasts, which expressed the immunomodulatory enzyme

indoleamine 2,3-dioxygenase (IDO), to diabetic mice

resulted in reinstatement of self-tolerance and subsequent

control of autoimmune diabetes. As both type 1 diabetes and

AA involve T cell-mediated autoimmunity, here we

explored the effect of IDO fibroblast therapy on AA. This

was achieved using the C3H/HeJ mouse AA model, which is

the most extensively characterized and commonly utilized

experimental model for AA10–12. Our results showed that,

similarly to type 1 diabetes, IDO fibroblast therapy signifi-

cantly prevents the development of AA.

Materials and Methods

Experimental mice and IP fibroblast injection

C3H/HeJ mice were obtained from the Jackson Laboratory

(Bar Harbor, ME, USA). AA was induced in 8-week-old

mice by grafting full-thickness AA-affected C3H/HeJ

mouse skin to unaffected mice as described previously13.

In this model, grafting small pieces of skin from AA-

affected to unaffected mice induces onset of AA within

8–10 weeks. It is generally believed that AA-affected

mouse skin contains factors capable of inducing AA in

immunocompetent hosts by activating host-derived mono-

nuclear cells and triggering an immune response against

host HFs. Most likely, activated lymphocytes and/or

antigen-presenting cells are transferred with the skin graft

and prime naı̈ve host lymphocytes, resulting in induction of

AA13–15. To induce AA, in brief, a circular piece of skin

about 1.5 cm in diameter was excised from the back of

recipient mice and replaced with a full-thickness donor skin

graft from mice spontaneously affected with AA. Dermal

fibroblasts were explanted from 8–10-week-old C57Bl/6

mouse skin. These fibroblasts (passage 4–5) were then

transduced with a lentiviral vector carrying IDO cDNA or

a mock vector as described previously16. IDO-expressing

or control fibroblasts (2 � 107 cells/ mouse) were injected

in a single dose (400 ml) intraperitoneally (IP) to graft reci-

pient mice on the day of skin grafting.

Histological analyses and immunostainings

Skins of mice were harvested at the endpoint of experiments

(20 weeks post-AA induction), kept freshly frozen or fixed

in 10% buffered formalin solution, and embedded in paraf-

fin. Tissue sections 5 mm in thickness were stained with

hematoxylin and eosin or rabbit anti-CD3 antibody (1:100

dilution, abcam, Cambridge, MA, USA) then analyzed by

light microscopy. Immunofluorescence staining was per-

formed on fresh frozen sections using rat anti-mouse CD4

and CD8 antibodies (1:100 dilution, AbD Serotec, Raleigh,

NC, USA). Rhodamine goat anti-rat IgG (Jackson Immu-

noResearch, West Grove, PA, USA) was used as the second-

ary antibody.

Characterization of immune cells

Skin and lymph nodes were harvested at the endpoint of

experiments (20 weeks post-AA induction) and single cell

suspensions were prepared using collagenase D (Roche

Diagnostics, Indianapolis, IN, USA) digestion (1 mg/ mL,

for 30 min at 37 �C). Cell suspensions were then incubated

with fluorescent conjugated antibodies (eBioscience, San

Diego, CA, USA) specific for particular lymphocyte markers

(i.e. CD4, CD8, CD 25, IL-17, and FoxP3) according to

manufacturer’s protocol. Fluorescence dot plots were cre-

ated using the Accuri C6 flow cytometer (BD Biosciences

Pharmingen, Mississauga, ON, Canada) and were used to

determine the percentage of positive cells labeled with the

corresponding antibodies.

Reverse transcriptase polymerase chain reaction
(RT-PCR)

Total RNA was isolated from skin tissues using TRIzol

(Invitrogen, Carlsbad, CA, USA). The complementary

DNA was synthesized by SuperScript II (Invitrogen) using

an Oligo (dT) primer (Invitrogen). RT-PCR was performed

for 40 cycles at a condition of 95 �C, 30 seconds for dena-

ture, 55 �C, 30 seconds for annealing and 68 �C, 40 seconds for

replication, using Taq DNA polymerase (New England Bio-

labs, Whitby, ON, Canada). The following primer sets were

used: IL-17 sense (50-TCCAGAAGGCCCTCAGACTA-30),
IL-17 antisense (50-AGCATCTTCTCGACCCTGAA-30),
product size: 238 bp; interferon-g sense (50-TGCATCTTG

GCTTTGCAGCTCTTC-30), interferon-g antisense (50-
GGGTTGTTGACCT CAAACTTGGCA30), product size:

355 bp; TNF-a sense (50-GAACTGGCAGAAGAGGCACT-

30), TNF-a antisense (50-AGGGTCTGGGCCATAGAACT-30),
product size: 203 bp; GAPDH sense (50-GGCATTGCTCT

CAATGACAA-30), GAPDH antisense (50-TGTGAGGGA

GATGCTCAGTG-30), product size: 200 bp. Amplified PCR

products were then separated by 1% agarose gel electrophoresis

and visualized with SYBER Safe DNA gel staining (Invitrogen)

under UV light.

Cytokine level measurement in skin homogenates
using cytometric bead assay

Circular punch samples of skin (6 mm in diameter) were

homogenized using a tissue homogenizer in 1 mL of ice-

cold cytokine extraction buffer (0.4 M NaCl, 0.05% Tween

20, 0.5% bovine serum albumin, 0.1 mM phenylmethylsul-

fonyl fluoride, 10 mM EDTA, and 20 Ki of aprotinin). The

homogenates were centrifuged at 13,000�g for 10 min at

4�C, and supernatants were stored at �80�C before analysis.

Interleukin-17A (IL-17), interferon-gamma (IFN-g), and

tumor necrosis factor-alpha (TNF-a) protein levels were

quantitatively measured by the BD CBA Mouse Inflamma-

tion Kit (BD Bioscience, San Diego, CA, USA). The mea-

surement was performed according to the manufacturer’s
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instructions. The intensity of the fluorescence signal was

acquired on an Accuri C6 flow cytometer and analyzed using

FCAP Array Software v3.0 (BD Biosciences).

Tracking intraperitoneal injected fibroblasts

Fibroblasts were labeled using a PKH26 red fluorescent

cell membrane labeling kit (Sigma, St. Louis, MO, USA)

according to manufacturer’s instructions and injected IP

into mice. Mice were euthanized at six time points at 7-

day intervals (i.e. week 1 to week 6). Cells were retrieved

from peritoneal cavity (by lavage), lymph nodes, spleen,

lung, and skin. Single cell suspensions form tissues were

prepared using collagenase D (Roche Diagnostics) diges-

tion (1 mg/ mL, for 30 min at 37 �C) and examined using

flow cytometry. To further characterize the cells that were

extracted from lymph nodes, these cells were stained for

CD90.2 (eBioscience) and examined using flow cytometry.

Presence of migratory fibroblasts in lymph nodes was

examined using confocal microscopy. To do so, PKH26-

labeled IDO-expressing fibroblasts (2 � 107 cells/mouse)

were injected IP into C3 H mice. After 2 weeks, mice were

euthanized and mesenteric lymph nodes were harvested,

freshly frozen and embedded in Cryomatrix (Thermo Sci-

entific, Kalamazoo, MI, USA). Frozen sections (5 mm

thick) from lymph nodes were permeabilized with 0.1%
Triton-X-100 in phosphate buffered saline (PBS), stained

with 4’,6-diamidino-2-phenylindole (DAPI) and visualized

using a confocal fluorescence microscope (Axio Observer

Z1 inverted confocal with spinning disk, Carl Zeiss, Jena,

Germany). Images were analyzed using Zen software (Carl

Zeiss).

Statistical analysis

Data are reported as mean + standard deviation of three or

more independent sets of experiments. The statistical differ-

ences of mean values among treated and control groups were

tested with one-way analysis of variance (ANOVA) fol-

lowed by post hoc comparisons using Bonferroni correction.

Kaplan–Meier survival analysis with log-rank (Mantel–Cox)

test was done to compare rate of AA incidence among

treatment groups. P values less than 0.05 were considered

statistically significant.

Results

Alopecia onset was prevented following a single IP
injection of IDO-expressing fibroblasts

C3H/HeJ mice (8 weeks old) were induced to develop AA

via skin grafting from AA-affected mice as described in the

Materials and methods section. On the day of surgery, after

the skin grafting procedure, these mice received IP injection

of either 2 � 107 IDO-expressing fibroblasts (n ¼ 15), con-

trol mock vector infected fibroblasts (n ¼ 10), or an equiv-

alent volume of cell transfer medium (vehicle, n ¼ 10). The

quantity of injected fibroblasts was determined based on the

findings of our recent studies showing that 2 � 107 IDO-

expressing fibroblasts are sufficient to control autoimmune

diabetes8–9. These mice were then monitored weekly for the

development of AA. The majority of vehicle and control

fibroblast-injected mice started showing AA-like hair loss

as early as 8 weeks post-skin grafting. Hair loss typically

originated from the ventral side of the body with subsequent

extension to the dorsal side in the form of patchy hair loss

areas (Figure 1(a) and (b)). In sharp contrast, all IDO fibro-

blast recipient mice maintained their full pelage coat and

none developed AA (Figure 1(c)). Initial skin graft patches

on most of the IDO group mice showed hair regrowth, but

they remained hairless in a few of the mice. As such, devel-

opment of AA was defined as the occurrence of hair loss of

any size on areas other than the grafted skin site. In total, AA

incidence in the vehicle and control fibroblast groups was

70% and 60%, respectively, while no AA case was seen in

the IDO fibroblast-treated group in the 20-week follow-up

period (Figure 1(d)). Kaplan–Meier plotting with log-rank

analysis further confirmed that IDO fibroblast therapy sig-

nificantly decreased AA incidence (P < 0.0001, Figure 1(e)).

Overall interpretation of these data indicates that a single

IDO fibroblast injection can very effectively prevent AA

in C3H/HeJ mice.

IDO fibroblast therapy prevented lymphocyte
infiltration and clustering around HFs

At the endpoint of the study, mice were euthanized and

their skin was examined using histology and flow cyto-

metry. Hematoxylin and eosin staining revealed typical

clustering of mononuclear cells consistent with lympho-

cyte aggregation around dystrophic HFs in the vehicle

and control fibroblast groups, whereas the IDO fibroblast

group exhibited healthy HFs with no lymphocyte cluster-

ing (Figure 2(a), top row). Further, immunohistological

analysis showed CD3þ cell accumulation (Figure 2(a),

second top row) and the presence of CD4þ and CD8þ

cells (Figure 2(a), two bottom rows) in AA lesions of

both vehicle and control fibroblast groups, while no

T cells were found around or within HFs of the IDO

fibroblast group. To quantify HF infiltrating T cells, skin

samples from comparable areas of each group were pro-

cessed as described in the Materials and methods section,

and the resulting cell suspensions were analyzed for CD8

and CD4 T cell markers using flow cytometry (Figure 2(b)).

The results, as presented in Figure 2(c), showed that the

frequencies of both CD8þ and CD4þ cells were signifi-

cantly higher in the skin of vehicle (13.9% + 1.3% and

8.8% + 1.9%, respectively) and control fibroblast groups

(12.8% + 1.8% and 8.4 + 1.3%, respectively) compared

with those of the IDO group (0.9%+ 0.2% and 1.2%+ 0.3%,

respectively, P < 0.001, n ¼ 5).
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Skin proinflammatory cytokines expression was
prevented by IDO fibroblast therapy

We investigated the inflammatory condition of skin after AA

induction in the different treatment groups. To this end, we

extracted total RNA from skin and analyzed it using

RT-PCR for expression of three major proinflammatory

cytokines (TNF-a, IFN-g, and IL-17). All of the proinflam-

matory cytokines were highly expressed in both vehicle and

control fibroblast groups in an active AA condition, as

expected (Figure 3(a)). In contrast, in the IDO fibroblast

group, expression of these cytokines was remarkably

reduced. Analysis of RT-PCR results normalized to the gly-

ceraldehyde 3-phosphate dehydrogenase (GAPDH) gene

further confirmed the statistically significant lower expres-

sion of TNF-a, IL-17, and IFN-g in the IDO fibroblast group

compared with both vehicle and control fibroblast groups

(Figure 3(b) to (d)). To further confirm this finding, we

measured cytokine levels using the cytokine bead assay as

described in the Materials and methods section. The results

of the bead assay showed that IFN-g and IL-17 were unde-

tectable and the TNF-a level was six times lower in skin of

Figure 1. Intraperitoneal IDO fibroblast injection prevents initiation of AA. IDO-expressing fibroblasts, control fibroblasts, or vehicle
solution were injected intraperitoneally into C3H/HeJ mice at the time of AA induction. Panels (a) to (c) show dorsal and ventral views of
representative mice from vehicle, control fibroblast (Ctrl Fib.), and IDO fibroblast (IDO Fib.) injected groups 20 weeks post-AA induction,
respectively. Small patches on the back of IDO fib mice are the sites of skin grafting for AA induction. Panel (d): 70% of vehicle and 60% of
control fibroblast recipient mice developed extensive AA, while all IDO fibroblast recipient mice remained AA free. Panel (e): Kaplan–Meier
survival analysis confirmed significant decrease in AA incidence in the IDO fibroblast-treated group (blue line, n¼ 15) compared with that of
vehicle (red line, n ¼ 10) and control fibroblast groups (green line, n ¼ 10) (P < 0.0001).
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the IDO fibroblast-treated group compared with the vehicle

and control fibroblast groups (Figure 3 (e) to (g)).

Skin draining lymph nodes exhibited a non-inflammatory
state following IDO fibroblast therapy

To gain a perspective on the immune system profile in dif-

ferent treatment groups, we examined axillary and inguinal

lymph nodes of mice at the endpoint of the study. The lymph

nodes were remarkably larger (Figure 4(a)) and weighed

significantly more (Figure 4(b)) in vehicle and control group

mice compared with those of the IDO group, suggesting an

ongoing active inflammatory condition in the control groups.

Further, as shown in Figure 4(c) and (d), flow cytometry

analysis of lymphocytes dissociated from lymph nodes

revealed a significantly higher frequency of CD4þ CD25þ

FoxP3þ regulatory T cells in the IDO group (10.6% + 1.6%)

compared with both vehicle (6.3% + 1.9%) and control

fibroblast groups (6.6% + 1.6%, P < 0.01, n ¼ 5). In con-

trast, the frequency of CD4þ IL-17þ T cells (compatible

with proinflammatory Th17 cells) was significantly lower

in the IDO group (3.7% + 0.9%) compared with the vehicle

(7.4% + 2.2%) and control fibroblast groups (7.8% +
2.3%, P < 0.05, n ¼ 5) (Figure 4(e) and (f)).

A small population of IP injected fibroblasts migrated
to lymph nodes

To investigate the fate of the fibroblasts after IP injection, we

labeled IDO-expressing fibroblasts with PKH26 red

Figure 2. Infiltration of T cells into hair follicles was prevented following IDO fibroblast therapy. IDO-expressing fibroblasts, control
fibroblasts, or vehicle solution were injected intraperitoneally into C3H/HeJ mice at the time of AA induction. Panel (a) compares the
histology of hair follicles in different treatment groups using hematoxylin and eosin (H&E) staining as well as immune staining for T cell
markers including CD3 (brown) CD4 (red), and CD8 (red). Scale bar¼ 50 mm. Panel (b) shows representative flow cytometry dot plots for
CD4 and CD8 surface markers in skin-derived cells. Panel (c) shows average frequency + SD of CD4þ and CD8þ skin-derived cells in
different treatment groups using flow cytometry. *denotes statistically significant difference between IDO and the two other control groups
(n ¼ 5, P < 0.001).
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fluorescent cell linker. The presence and frequency of IP

injected, labeled fibroblasts were then examined in various

tissues using flow cytometry 1 week after IP injection. The

results showed that IP injected fibroblasts remained primar-

ily in the peritoneal cavity, while a small population

migrated to regional draining lymph nodes (Figure 5(a)).

No PKH26-labeled cells were found in other tissues, includ-

ing blood circulation, spleen, lung, or skin. To track fibro-

blasts homing to lymph nodes, we measured the frequency of

PKH26þ cells in lymph nodes at different time points after

IP injection. We found that PKH26þ cells remained in lymph

nodes for up to 5 weeks post IP injection, but their frequency

decreased over time, and the cells were eventually cleared

out after 5 weeks (Figure 5(b)). To visualize the migratory

cells within the lymph nodes, frozen sections from C3 H

mice lymph nodes were examined 2 weeks after IP fibroblast

injection using fluorescence confocal microscopy. As shown

in Figure 5(c), red PKH26-labeled cells were visible among

lymphocytes. To further characterize the phenotype of

migratory cells, we co-stained lymph node cells with

CD90 as a fibroblast marker. Examining cell surface markers

using flow cytometry at different time points post IP cell

injection confirmed that the majority of those PKH26þ cells

were also CD90 positive (Figure 5(d)). This finding strongly

suggests that the PKH26þ cells found within lymph nodes

are possibly IP injected fibroblasts that migrated to lymph

nodes.

Discussion

In this study, we showed that a single IP injection of IDO-

expressing fibroblasts very effectively prevented induction

of AA in C3H/HeJ mice. AA is one of the most prevalent

autoimmune disorders and a major unresolved clinical prob-

lem. However, it has not been well studied in comparison to

other autoimmune diseases. This gap in information about

AA has resulted in a lack of satisfactory and effective treat-

ments. As such, finding novel effective, yet safe, therapeutic

methods for AA is greatly needed.

The C3H/HeJ mouse strain is a well-studied experimental

model for AA. While only 20% of aged mice develop

spontaneous AA14,15, AA can be induced in normal-haired

Figure 3. IDO fibroblast therapy resulted in decreased expression of proinflammatory cytokines in skin. IDO-expressing fibroblasts,
control fibroblasts, or vehicle solution were injected intraperitoneally into C3H/HeJ mice at the time of AA induction. Total RNA was
extracted from skin samples 20 weeks post-AA induction and was analyzed using reverse transcriptase polymerase chain reaction (RT-PCR).
Panel (a) shows representative RT-PCR results for TNF-a, IL-17, and IFN-g in vehicle (V), IDO fibroblast (IF), and control fibroblast (CF)
groups. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was run as loading control. Panels (b) to (d), respectively, show average
relative cytokine mRNA expression + SD of TNF-a, IL-17, and IFN-g in skin of different treatment groups. Panels (e) to (g) show
quantitative measurement of these inflammatory cytokines at protein level in skin of different treatment groups using a cytometric bead
assay. * denotes statistically significant difference between IDO and the two other control groups (n ¼ 5, P < 0.001).

Jalili et al 999



C3H/HeJ mice by transplanting a small piece of AA-affected

skin13 or by intradermal injection of lymph node-derived

cells17,18. In this study, we induced AA via grafting full-

thickness AA-affected C3H/HeJ mouse skin to unaffected

mice. This method usually results in development of AA

in 80–100% of mice approximately 8–12 weeks after skin

grafting13. As shown in Figure 1, while control groups

showed a 60–70% rate of extensive AA development, the

IDO fibroblast cell-based therapy resulted in a striking pre-

vention of occurrence of new AA lesions in 100% of mice.

Similarly to many other autoimmune diseases, there is a

strong body of evidence supporting the role of T cells in the

pathogenesis of AA4,19. Indeed, the most prominent histolo-

gical characteristic of AA is the perifollicular inflammatory

cell infiltration, particularly CD4þ and CD8þ T cells20.

Thus, therapeutic methods that target activated T cells can

be considered plausible candidate treatments for AA. The

cell-based therapy reported in this study is based on

application of dermal fibroblasts that express a potent

immunomodulatory enzyme known as IDO. IDO is a

rate-limiting enzyme in the tryptophan catabolism path-

way, which is a potent regulator of the immune system

with a critical function in induction and maintenance of

auto- and allo-tolerance21,22.

Figure 4. Anti-inflammatory changes in skin draining lymph nodes following IDO fibroblast therapy. IDO-expressing fibroblasts, control
fibroblasts, or vehicle solution were injected intraperitoneally into C3H/HeJ mice at the time of AA induction. Panels (a) and (b) show
representative axillary and inguinal lymph nodes (LN) size and average weight + SD in different treatment groups. Panels (c) and (e),
respectively, show representative flow cytometry dot plots for CD25þ FoxP3þ regulatory T cells, and CD4þ IL-17þ Th17 cells, both gated
on CD4þ cells in LN-derived cells. Panels (d) and (f), respectively, show average frequency + SD of regulatory T cells and Th17 LN cells in
different treatment groups using flow cytometry. *denotes statistically significant difference between IDO and the two other control groups
(n ¼ 5, P < 0.01).
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We previously showed that IDO-expressing fibroblasts

potently suppressed activated CD4þ and CD8þ T cells and

significantly increased CD4þ CD25þ FoxP3þ Tregs in dif-

ferent settings23–26. Our findings here (Figure 2) confirm that

CD4þ and CD8þ T cells were significantly prevented from

infiltrating into HFs in the IDO group, and therefore hair loss

was prevented in these mice. Moreover, we found that pro-

minent proinflammatory cytokines including IFN-g, TNF-a,

and IL-17 were significantly downregulated at both mRNA

and protein levels in the IDO fibroblast-treated group.

These cytokines are important mediators in AA hair loss

induction27–32. Therefore, blocking their production may

protect HFs, as we observed in IDO fibroblast-treated mice.

Similarly, it has been shown that systemic delivery of other

anti-inflammatory treatments such as quercetin by IP injec-

tions prevented/reduced the onset of AA, possibly through

blocking the expression of proinflammatory cytokines33.

Another important aspect of IDO’s immune regulatory

function is its tolerogenic ability. It has been well evidenced

that IDO can induce immune tolerance via generating and

sustaining the function of regulatory T cells34. In this study,

we showed that treatment with IDO fibroblasts resulted in a

significant increase in CD4þ CD25þ FoxP3þ Tregs in lymph

nodes. These cells are very potent inhibitors of inflammatory

and auto-reactive immune cells. In fact, a reduction in the

number and function of the Tregs has been reported in

AA-affected C3H/HeJ mice35. Accordingly, boosting the

quantity and function of Tregs was shown to be beneficial

in the treatment of AA36. As such, increased Treg numbers

following IDO cell therapy are likely to be a contributing

factor in the prevention of AA in this study.

A very important question in this cell therapy model is to

elucidate the function and fate of fibroblasts after IP injection.

Fibroblasts have long been known as non-professional antigen-

presenting cells37–40, and, similarly to mesenchymal stem cells,

they can foster an anti-inflammatory condition41–43. Further,

we previously showed that IP injected fibroblasts can migrate

to lymph nodes and express important co-inhibitory mole-

cules, programmed cell death ligand 1 and 28,44, which play

an important role in suppressing the immune responses in

AA45 as well as other autoimmune diseases46,47. Therefore,

fibroblasts per se can play a role in suppressing destructive

immune responses in AA. However, our results in this and

previous studies have proven that IDO expression is also

required for generating a sufficient tolerance response, as

non-IDO-expressing control fibroblasts could not prevent AA.

Regarding the fate of fibroblasts after IP injection, con-

sistently with our previous work8,44, we found that the

majority of fibroblasts remain within the peritoneal cavity,

with a small fraction migrating to draining lymph nodes.

These migratory IDO-expressing fibroblasts homed within

lymph nodes for a few weeks and eventually cleared out

(Figure 5). The typical 8–12-week delay between the AA

trigger event (i.e. skin grafting) and the onset of hair loss

suggests that key AA-related immunological events occur

before initiation of overt hair loss. It was shown that during

this latent time, proinflammatory events, including lympho-

cyte priming and proliferation, occur within the lymph

nodes prior to significant T cell infiltration into the skin

and subsequent hair loss onset35,48. As such, the initial

spark for AA onset likely occurs in the draining lymph

nodes rather than in the skin. It is possible, therefore, that

migratory IDO-expressing fibroblasts interfere with this

early proinflammatory process within the lymph nodes and

extinguish subsequent propagation of the AA-inducing

immune response.

In this study, we did not investigate the effect of IDO cell

therapy on treatment of previously established AA lesions.

However, as most clinical cases of AA start with the occur-

rence of a small patch of hair loss1,2, we can speculate that

early IDO cell therapy at commencement of the first patch of

AA, might be a potentially effective approach for preventing

the progression of AA to other regions of the scalp and body.

That being said, our group is currently investigating intrale-

sional injection of IDO-expressing cells for treatment of

established AA lesions.

Taken together, the findings of this study show that IDO-

expressing fibroblasts can potently stop autoimmune

responses against HFs and very effectively prevent hair loss

in an experimental AA model. Although this promising

model in its current form may have clear limitations for

clinical application, we are optimistic that with further

improvements it can open new avenues toward developing

an effective AA treatment.
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