2,666 research outputs found

    Open windrow composting of polymers: An investigation into the rate of degradation of polyethylene

    Get PDF
    The compostability of degradable polymers under open windrow composting conditions is explored within this paper. Areas for consideration were the use of, and impacts of, degradable polyethylene (PE) sacks on the composting process and the quality of the finished compost product. These factors were investigated through polymer weight loss over the composting process, the amount of polymer residue and chemical contaminants in the finished compost product, the windrow temperature profiles and a bioassay to establish plant growth and germination levels using the final compost product. This trial also included a comparative study of the weight loss under composting conditions of two different types of ‘degradable’ polymer sacks currently on the European market: PE and a starch based product. Statistical analysis of the windrow temperature profiles has led to the development of a model, which can help to predict the expected trends in the temperature profiles of open compost windrows where the organic waste is kerbside collected using a degradable PE sack

    Elastic-plastic solutions for expanding cavities embedded in two different cohesive-frictional materials

    Get PDF
    An analytical solution of cavity expansion in two different concentric regions of soil is developed and investigated in this paper. The cavity is embedded within a soil with finite radial dimension and surrounded by a second soil, which extends to infinity. Large-strain quasi-static expansion of both spherical and cylindrical cavities in elastic-plastic soils is considered. A non-associated Mohr–Coulomb yield criterion is used for both soils. Closed-form solutions are derived, which provide the stress and strain fields during the expansion of the cavity from an initial to a final radius. The analytical solution is validated against finite element simulations, and the effect of varying geometric and material parameters is studied. The influence of the two different soils during cavity expansion is discussed by using pressure–expansion curves and by studying the development of plastic regions within the soils. The analytical method may be applied to various geotechnical problems, which involve aspects of soil layering, such as cone penetration test interpretation, ground-freezing around shafts, tunnelling, and mining

    Moving from evidence-based medicine to evidence-based health.

    Get PDF
    While evidence-based medicine (EBM) has advanced medical practice, the health care system has been inconsistent in translating EBM into improvements in health. Disparities in health and health care play out through patients' limited ability to incorporate the advances of EBM into their daily lives. Assisting patients to self-manage their chronic conditions and paying attention to unhealthy community factors could be added to EBM to create a broader paradigm of evidence-based health. A perspective of evidence-based health may encourage physicians to consider their role in upstream efforts to combat socially patterned chronic disease

    Can a falling tree make a noise in two forests at the same time?

    Get PDF
    It is a commonplace to claim that quantum mechanics supports the old idea that a tree falling in a forest makes no sound unless there is a listener present. In fact, this conclusion is far from obvious. Furthermore, if a tunnelling particle is observed in the barrier region, it collapses to a state in which it is no longer tunnelling. Does this imply that while tunnelling, the particle can not have any physical effects? I argue that this is not the case, and moreover, speculate that it may be possible for a particle to have effects on two spacelike separate apparatuses simultaneously. I discuss the measurable consequences of such a feat, and speculate about possible statistical tests which could distinguish this view of quantum mechanics from a ``corpuscular'' one. Brief remarks are made about an experiment underway at Toronto to investigate these issues.Comment: 9 pp, Latex, 3 figs, to appear in Proc. Obsc. Unr. Conf.; Fig 2 postscript repaired on 26.10.9

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    Blow-up profile of rotating 2D focusing Bose gases

    Full text link
    We consider the Gross-Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation Ω\Omega. First we study the behavior of the ground state when the coupling constant approaches a_a\_* , the critical strength of the cubic nonlinearity for the focusing nonlinear Schr{\"o}dinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo-Nirenberg solution. In particular, the blow-up scenario is independent of Ω\Omega, to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141--156) in the non-rotating case. In a second part we consider the many-particle Hamiltonian for NN bosons, interacting with a potential rescaled in the mean-field manner a_NN2β1w(Nβx),with--a\_N N^{2\beta--1} w(N^{\beta} x), with wapositivefunctionsuchthat a positive function such that \int\_{\mathbb{R}^2} w(x) dx = 1.Assumingthat. Assuming that \beta < 1/2andthat and that a\_N \to a\_*sufficientlyslowly,weprovethatthemanybodysystemisfullycondensedontheGrossPitaevskiigroundstateinthelimit sufficiently slowly, we prove that the many-body system is fully condensed on the Gross-Pitaevskii ground state in the limit N \to \infty$

    Geostatistical modeling and spatial distribution analysis of porosity and permeability in the Shurijeh-B reservoir of Khangiran gas field in Iran

    Get PDF
    The main objectives of this study are analysis of spatial behavior of the porosity and permeability, presenting direction of anisotropy for each variable and describing variation of these parameters in Shurijeh B gas reservoir in Khangiran gas field. Porosity well log data of 32 wells are available for performing this geostatistical analysis. A univariate statistical analysis is done on both porosity and permeability to provide a framework for geostatistical analysis and modeling. For spatial analysis of these parameters, the experimental semivariogram of each variable in different direction as well as their variogram map plotted to find out the direction of anisotropy and their geostatistical parameters such as range, sill, and nugget effect for later geostatistical work and finally for geostatistical modeling, two approaches kriging and Sequential Gaussian Simulation are used to get porosity and permeability maps through the entire reservoir. All of statistical and geostatistical analysis has been done using GSLIB and PETREL software. Maximum and minimum direction of continuity are found to be N75W and N15E, respectively. Geostatistical parameters of calculated semivariogram in this direction like range of 7000 m and nugget of 0.2 are used for modeling. Both kriging and SGS method used for modeling but kriging tends to smooth out estimates but on the other hand SGS method tends to show up details. Cross-validation also used to validate the generated modeling

    An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner.

    Get PDF
    Sequence alignment has had an enormous impact on our understanding of biology, evolution, and disease. The alignment of biological networks holds similar promise. Biological networks generally model interactions between biomolecules such as proteins, genes, metabolites, or mRNAs. There is strong evidence that the network topology-the "structure" of the network-is correlated with the functions performed, so that network topology can be used to help predict or understand function. However, unlike sequence comparison and alignment-which is an essentially solved problem-network comparison and alignment is an NP-complete problem for which heuristic algorithms must be used.Here we introduce SANA, the Simulated Annealing Network Aligner. SANA is one of many algorithms proposed for the arena of biological network alignment. In the context of global network alignment, SANA stands out for its speed, memory efficiency, ease-of-use, and flexibility in the arena of producing alignments between two or more networks. SANA produces better alignments in minutes on a laptop than most other algorithms can produce in hours or days of CPU time on large server-class machines. We walk the user through how to use SANA for several types of biomolecular networks

    Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.

    Get PDF
    Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio
    corecore