50 research outputs found

    Extended book review: Transnational trade unionism: dream and reality

    Get PDF
    Book review of : Reiner Tosstorff, The Red International of Labour Unions (RILU), 1920–1937, Leiden: Brill, 2016; 918 pp.: ISBN 9789004236646, (hbk); Chicago, IL: Haymarket Books, 2018; 918 pp.: ISBN 9781608468164, (pbk

    Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(<it>Oncorhynchus mykiss</it>), Arctic charr (AC)(<it>Salvelinus alpinus</it>), and Atlantic salmon (AS)(<it>Salmo salar</it>) mapping panels.</p> <p>Results</p> <p>Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks.</p> <p>Conclusions</p> <p>Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression.</p

    Molecular Signatures Reveal Circadian Clocks May Orchestrate the Homeorhetic Response to Lactation

    Get PDF
    Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (n = 5) on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations and suggest that these changes are coordinated through molecular clocks

    Brazilian Consensus on Photoprotection

    Full text link

    Development of an Ontology of Biomimetics Based on Altshuller’s Matrix

    No full text
    Part 1: Biomimicry and TRIZInternational audienceThe discovery of novel solutions in engineering is critical for most industries. Largely inspired by TRIZ, practical solutions can be found beyond engineering. In the wider search, the tradition of looking to biology for solutions (biomimetics) is well founded but little exploited. It turns out to be a non-trivial exercise, requiring a bridge between largely descriptive biology (functioning primarily at the molecular level) and engineering which is predictable (but at a more statistical level). We propose that the bridge is best built at the level of design, more particularly in the behaviour of solving well-defined problems, an aspect at which TRIZ excels. We postulate that an ontology is an excellent medium for this bridge. The central theorem is that there is a finite number of design problems expressed as trade-offs (Altshuller’s Matrix) and that the same (or very similar) trade-offs can be identified in biology. The ontology enables the identification and alignment of these trade-offs, thus marrying a problem in engineering with its solution in biology and referential expression in a (possibly) novel engineering material, structure or device

    Historic landscape characterisation in the urban domain

    No full text
    Landscape characterisation has emerged as an important means for assessing the context and broader setting for decision-making as it facilitates thinking outside of the site boundary. Within the domain of heritage planning, this is congruent with a new appreciation of the cultural landscape as heritage with the current English Heritage programme of historic landscape characterisation emerging as an important tool to support this approach. Although initially providing a predominantly rural emphasis, historic landscape characterisation surveys now provide comprehensive coverage of many urban areas and so potentially offer the urban planner and designer with a key source of map data outlining current urban character and its readable historic time-depth. The summarised findings result from participatory action with Sheffield City Council in exploring potential urban applications of historic landscape characterisation. The emerging themes were drawn from numerous practice scenarios and aim to outline opportunities for incorporating historic landscape characterisation in urban decision-making and design
    corecore