16 research outputs found

    In Vitro Aggregation Behavior of a Non-Amyloidogenic λ Light Chain Dimer Deriving from U266 Multiple Myeloma Cells

    Get PDF
    Excessive production of monoclonal light chains due to multiple myeloma can induce aggregation-related disorders, such as light chain amyloidosis (AL) and light chain deposition diseases (LCDD). In this work, we produce a non-amyloidogenic IgE λ light chain dimer from human mammalian cells U266, which originated from a patient suffering from multiple myeloma, and we investigate the effect of several physicochemical parameters on the in vitro stability of this protein. The dimer is stable in physiological conditions and aggregation is observed only when strong denaturating conditions are applied (acidic pH with salt at large concentration or heating at melting temperature Tm at pH 7.4). The produced aggregates are spherical, amorphous oligomers. Despite the larger β-sheet content of such oligomers with respect to the native state, they do not bind Congo Red or ThT. The impossibility to obtain fibrils from the light chain dimer suggests that the occurrence of amyloidosis in patients requires the presence of the light chain fragment in the monomer form, while dimer can form only amorphous oligomers or amorphous deposits. No aggregation is observed after denaturant addition at pH 7.4 or at pH 2.0 with low salt concentration, indicating that not a generic unfolding but specific conformational changes are necessary to trigger aggregation. A specific anion effect in increasing the aggregation rate at pH 2.0 is observed according to the following order: SO4−≫Cl−>H2PO4−, confirming the peculiar role of sulfate in promoting protein aggregation. It is found that, at least for the investigated case, the mechanism of the sulfate effect is related to protein secondary structure changes induced by anion binding

    A Particle Model for Prediction of Cement Infiltration of Cancellous Bone in Osteoporotic Bone Augmentation.

    Get PDF
    PMC3693961Femoroplasty is a potential preventive treatment for osteoporotic hip fractures. It involves augmenting mechanical properties of the femur by injecting Polymethylmethacrylate (PMMA) bone cement. To reduce the risks involved and maximize the outcome, however, the procedure needs to be carefully planned and executed. An important part of the planning system is predicting infiltration of cement into the porous medium of cancellous bone. We used the method of Smoothed Particle Hydrodynamics (SPH) to model the flow of PMMA inside porous media. We modified the standard formulation of SPH to incorporate the extreme viscosities associated with bone cement. Darcy creeping flow of fluids through isotropic porous media was simulated and the results were compared with those reported in the literature. Further validation involved injecting PMMA cement inside porous foam blocks - osteoporotic cancellous bone surrogates - and simulating the injections using our proposed SPH model. Millimeter accuracy was obtained in comparing the simulated and actual cement shapes. Also, strong correlations were found between the simulated and the experimental data of spreading distance (R2 = 0.86) and normalized pressure (R2 = 0.90). Results suggest that the proposed model is suitable for use in an osteoporotic femoral augmentation planning framework.JH Libraries Open Access Fun

    Generation and Analysis of Striated Muscle Selective LINC Complex Protein Mutant Mice

    Get PDF
    The linker of nucleoskeleton and cytoskeleton (LINC) complex mediates intracellular cross talk between the nucleus and the cytoplasm. In striated muscle, the LINC complex provides structural support to the myocyte nucleus and plays an essential role in regulating gene expression and mechanotransduction. A wide range of cardiac and skeletal myopathies have been linked to mutations in LINC complex proteins. Studies utilizing tissue-specific knockout and mutant mouse models have revealed important insights into the roles of the LINC complex in striated muscle. In this chapter, we describe several feasible approaches for generating striated muscle-specific gene knockout and mutant mouse models to study LINC complex protein function in cardiac and skeletal muscle. The experimental procedures used for phenotyping and analysis of LINC complex knockout mice are also described

    Variation in Masculinities and Fathering Behaviors: A Cross-National Comparison of the United States and Canada

    No full text
    Research continues to examine the barriers to and facilitators of positive fathering behaviors. One area recently addressed by researchers focuses on the relationship between masculine norm adherence and father involvement. Yet, little work has examined cross-national variability in this relationship—despite differences in gender norms, fathering expectations, and social policies across countries. The present study considers possible differences in the relationship between masculine norm adherence and fathering behaviors in the United States and Canada—two rich, multiethnic countries with many similarities but some distinct policy and family support differences. Using data from fathers in Canada (n = 2057) and the United States (n = 2207), our results show that fathers in Canada are warmer, more involved, provide more care, and use harsh discipline less than their American counterparts. Furthermore, the negative association between masculine norm adherence and positive fathering behaviors is stronger among American fathers than Canadian fathers. Overall, our findings indicate the importance of social context for understanding how gender norms shape men’s parenting, given that the association between masculine norms and fathering varies in two culturally similar countries with different social policies around family life. Implications for social policy in the two countries and within institutional contexts are discussed
    corecore