89 research outputs found

    Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology

    Get PDF
    The middle ear of turtles differs from other reptiles in being separated into two distinct compartments. Several ideas have been proposed as to why the middle ear is compartmentalized in turtles, most suggesting a relationship with underwater hearing. Extant turtle species span fully marine to strictly terrestrial habitats, and ecomorphological hypotheses of turtle hearing predict that this should correlate with variation in the structure of the middle ear due to differences in the fluid properties of water and air. We investigate the shape and size of the airā€filled middle ear cavity of 56 extant turtles using 3D data and phylogenetic comparative analysis to test for correlations between habitat preferences and the shape and size of the middle ear cavity. Only weak correlations are found between middle ear cavity size and ecology, with aquatic taxa having proportionally smaller cavity volumes. The middle ear cavity of turtles exhibits high shape diversity among species, but we found no relationship between this shape variation and ecology. Surprisingly, the estimated acoustic transformer ratio, a key functional parameter of impedanceā€matching ears in vertebrates, also shows no relation to habitat preferences (aquatic/terrestrial) in turtles. We suggest that middle ear cavity shape may be controlled by factors unrelated to hearing, such as the spatial demands of surrounding cranial structures. A review of the fossil record suggests that the modern turtle ear evolved during the Early to Middle Jurassic in stem turtles broadly adapted to freshwater and terrestrial settings. This, combined with our finding that evolutionary transitions between habitats caused only weak evolutionary changes in middle ear structure, suggests that tympanic hearing in turtles evolved as a compromise between subaerial and underwater hearing

    Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production

    Get PDF
    Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti-dsDNA autoantibody production, a SLE-related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti-dsDNA autoantibody positive (anti-dsDNA +, n = 811) and anti-dsDNA autoantibody negative (anti-dsDNA -, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti-dsDNA + SLE. Far fewer and weaker associations were observed for anti-dsDNA - SLE. For example, rs7574865 in STAT4 had an OR for anti-dsDNA + SLE of 1.77 (95% CI 1.57-1.99, p = 2.0E-20) compared to an OR for anti-dsDNA - SLE of 1.26 (95% CI 1.12-1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti-dsDNA + SLE and were not associated with anti-dsDNA - SLE. In conclusion, we identified differential genetic associations with SLE based on anti-dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti-dsDNA - SLE

    A Comprehensive Analysis of Shared Loci between Systemic Lupus Erythematosus (SLE) and Sixteen Autoimmune Diseases Reveals Limited Genetic Overlap

    Get PDF
    In spite of the well-known clustering of multiple autoimmune disorders in families, analyses of specific shared genes and polymorphisms between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) have been limited. Therefore, we comprehensively tested autoimmune variants for association with SLE, aiming to identify pleiotropic genetic associations between these diseases. We compiled a list of 446 nonā€“Major Histocompatibility Complex (MHC) variants identified in genome-wide association studies (GWAS) of populations of European ancestry across 17 ADs. We then tested these variants in our combined Caucasian SLE cohorts of 1,500 cases and 5,706 controls. We tested a subset of these polymorphisms in an independent Caucasian replication cohort of 2,085 SLE cases and 2,854 controls, allowing the computation of a meta-analysis between all cohorts. We have uncovered novel shared SLE loci that passed multiple comparisons adjustment, including the VTCN1 (rs12046117, Pā€Š=ā€Š2.02Ɨ10āˆ’06) region. We observed that the loci shared among the most ADs include IL23R, OLIG3/TNFAIP3, and IL2RA. Given the lack of a universal autoimmune risk locus outside of the MHC and variable specificities for different diseases, our data suggests partial pleiotropy among ADs. Hierarchical clustering of ADs suggested that the most genetically related ADs appear to be type 1 diabetes with rheumatoid arthritis and Crohn's disease with ulcerative colitis. These findings support a relatively distinct genetic susceptibility for SLE. For many of the shared GWAS autoimmune loci, we found no evidence for association with SLE, including IL23R. Also, several established SLE loci are apparently not associated with other ADs, including the ITGAM-ITGAX and TNFSF4 regions. This study represents the most comprehensive evaluation of shared autoimmune loci to date, supports a relatively distinct nonā€“MHC genetic susceptibility for SLE, provides further evidence for previously and newly identified shared genes in SLE, and highlights the value of studies of potentially pleiotropic genes in autoimmune diseases

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. Ā© 2012 Macmillan Publishers Limited. All rights reserved

    Die Stoffwechselwirkungen der SchilddrĆ¼senhormone

    Get PDF

    European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment

    Get PDF
    To develop a European guideline on pharmacologic treatment of Tourette syndrome (TS) the available literature was thoroughly screened and extensively discussed by a working group of the European Society for the Study of Tourette syndrome (ESSTS). Although there are many more studies on pharmacotherapy of TS than on behavioral treatment options, only a limited number of studies meets rigorous quality criteria. Therefore, we have devised a two-stage approach. First, we present the highest level of evidence by reporting the findings of existing Cochrane reviews in this field. Subsequently, we provide the first comprehensive overview of all reports on pharmacological treatment options for TS through a MEDLINE, PubMed, and EMBASE search for all studies that document the effect of pharmacological treatment of TS and other tic disorders between 1970 and November 2010. We present a summary of the current consensus on pharmacological treatment options for TS in Europe to guide the clinician in daily practice. This summary is, however, rather a status quo of a clinically helpful but merely low evidence guideline, mainly driven by expert experience and opinion, since rigorous experimental studies are scarce

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37Ā MJ of fusion for 1.92Ā MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    bcl-2 and prognosis in non-small-cell lung carcinoma.

    No full text
    • ā€¦
    corecore