9 research outputs found

    Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment

    Get PDF
    Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.Authors want to acknowledge the UAB veterinary hospital staff for their kind permission and help for the samplings. This work has been funded by the Spanish Ministry of Economy and Competitiveness and FEDER (projects CTM2013-48545-C2 and AIB2010PT-00169) and supported by the Generalitat de Catalunya (Consolidated Research Groups 2014-SGR-476 and 2014-SGR-291). The Department of Chemical Engineering of the Universitat Autonoma de Barcelona (UAB) is a member of the Xarxa de Referencia en Biotecnologia de la Generalitat de Catalunya. M. Badia-Fabregat and D. Lucas acknowledge the predoctoral grants from UAB and from the Spanish Ministry of Education, Culture and Sports (AP-2010-4926), respectively. The authors also thank the Portuguese Foundation for Science and Technology (FCT) Strategic Project PEst-OE/EQB/LA0023/2013, Project FCOMP-01-0124-FEDER-027462 co-funded by Operational Competitiveness Programme, FEDER, and Project "BioEnv-Biotechnology and Bioengineering for a sustainable world," REF. NORTE-07-0124-FEDER-000048, co-funded by Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER

    Fungal bioaugmentation of two rice husk-based biomixtures for the removal of carbofuran in on-farm biopurification systems

    No full text
    The ligninolytic fungus Trametes versicolor was employed in the bioaugmentation of compost- (GCS) and peat-based (GTS) biomixtures for the removal of the insecticide-nematicide carbofuran (CFN). Among several lignocellulosic substrates, fungal colonization was best supported in rice husk, and this pre-colonized substrate was used to prepare the biomixtures. Estimated half-lives for CFN were 3.4 and 8.1 days in the GTS and GCS biomixtures, respectively. The CFN transformation products 3-hydroxycarbofuran and 3-ketocarbofuran were detected at the moment of CFN application, but their concentration continuously decreased to complete removal in both biomixtures. Mineralization of 14Cradiolabeled CFN was faster in GTS (k=0.00248 day−1) than in GCS (k=0.00188 day−1). Complete elimination of the toxicity in the matrices was demonstrated after 48 days. Overall data suggest that the bioaugmentation improved the performance of the GTS rather than the GCS biomixture.Universidad de Costa Rica/[802-B2-046]/UCR/Costa RicaUniversidad de Costa Rica/[802-B4-503]/UCR/Costa RicaUniversidad de Costa Rica/[802-B4-609]/UCR/Costa RicaMinisterio de Ciencia, Tecnología y Telecomunicaciones/[FI-093-13]/MICITT/Costa RicaFood and Agriculture Organization/[TC COS5/029]/FAO/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro en Investigación en Contaminación Ambiental (CICA

    White-Rot Fungi in Bioremediation

    No full text
    Bioremediation is defined as the application of biological processes to the treatment of pollution. Most research on the field of bioremediation has focused on bacteria, and fungal bioremediation (mycoremediation) has also been attracting the interest just for a couple of decades. The toxicity of many pollutants reduces natural attenuation of bacteria, but white-rot fungi (WRF) can challenge with toxic levels of the most pollutants. Fungi are robust organisms having very high tolerance to toxic environments, and this feature makes them ideal to use for bioremedial purposes. White-rot fungi are basidiomycetes that are capable of degrading a lignocellulose substrate. Extracellular enzymes involved in the degradation of lignin and xenobiotics by white-rot fungi include several kinds of laccases, peroxidases, and oxidases producing H2O2. Nowadays, great progress in this area may derive from modern molecular technologies, which may provide cheaper potential sources of various enzymes by means of genetically modified microorganisms or plants. This chapter explains the bioremediation and its application conditions and degradation mechanisms of the harmful compounds such as textile dyes, PAHs, chlorophenols, TNT, pesticides, and nylon
    corecore