85 research outputs found

    Quantum Simulation of Tunneling in Small Systems

    Full text link
    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution. We show that physically interesting simulations of tunneling using 2 qubits (i.e. on 4 lattice point grids) may be performed with 40 single and two-qubit gates. Approximately 70 to 140 gates are needed to see interesting tunneling dynamics in three-qubit (8 lattice point) simulations.Comment: 4 pages, 2 figure

    Utility of a thematic network in primary health care: a controlled interventional study in a rural area

    Get PDF
    BACKGROUND: UniNet is an Internet-based thematic network for a virtual community of users (VCU). It supports a virtual multidisciplinary community for physicians, focused on the improvement of clinical practice. This is a study of the effects of a thematic network such as UniNet on primary care medicine in a rural area, specifically as a platform of communication between specialists at the hospital and doctors in the rural area. METHODS: In order to study the effects of a thematic network such as UniNet on primary care medicine in a rural area, we designed an interventional study that included a control group. The measurements included the number of patient displacements due to disease, number of patient hospital stays and the number of prescriptions of drugs of low therapeutic utility and generic drug prescriptions by doctors. These data were analysed and compared with those of the control center. RESULTS: Our study showed positive changes in medical practice, reflected in the improvement of the evaluated parameters in the rural health area where the interventional study was carried out, compared with the control area. We discuss the strengths and weaknesses of UniNet as a potential medium to improve the quality of medical care in rural areas. CONCLUSION: The rural doctors had an effective, useful, user-friendly and cheap source of medical information that may have contributed to the improvement observed in the medical quality indices

    Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    Get PDF
    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions

    Susceptibility to Predation Affects Trait-Mediated Indirect Interactions by Reversing Interspecific Competition

    Get PDF
    Numerous studies indicate that the behavioral responses of prey to the presence of predators can have an important role in structuring assemblages through trait-mediated indirect interactions. Few studies, however, have addressed how relative susceptibility to predation influences such interactions. Here we examine the effect of chemical cues from the common shore crab Carcinus maenas on the foraging behavior of two common intertidal gastropod molluscs. Of the two model consumers studied, Littorina littorea is morphologically more vulnerable to crab predation than Gibbula umbilicalis, and it exhibited greater competitive ability in the absence of predation threat. However, Littorina demonstrated a greater anti-predator response when experimentally exposed to predation cues, resulting in a lower level of foraging. This reversed the competitive interaction, allowing Gibbula substantially increased access to shared resources. Our results demonstrate that the susceptibility of consumers to predation can influence species interactions, and suggest that inter-specific differences in trait-mediated indirect interactions are another mechanism through which non-consumptive predator effects may influence trophic interactions

    No evidence that footedness in pheasants influences cognitive performance in tasks assessing colour discrimination and spatial ability

    Get PDF
    The differential specialization of each side of the brain facilitates the parallel processing of information and has been documented in a wide range of animals. Animals that are more lateralized as indicated by consistent preferential limb use are commonly reported to exhibit superior cognitive ability as well as other behavioural advantages.We assayed the lateralization of 135 young pheasants (Phasianus colchicus), indicated by their footedness in a spontaneous stepping task, and related this measure to individual performance in either 3 assays of visual or spatial learning and memory. We found no evidence that pronounced footedness enhances cognitive ability in any of the tasks. We also found no evidence that an intermediate footedness relates to better cognitive performance. This lack of relationship is surprising because previous work revealed that pheasants have a slight population bias towards right footedness, and when released into the wild, individuals with higher degrees of footedness were more likely to die. One explanation for why extreme lateralization is constrained was that it led to poorer cognitive performance, or that optimal cognitive performance was associated with some intermediate level of lateralization. This stabilizing selection could explain the pattern of moderate lateralization that is seen in most non-human species that have been studied. However, we found no evidence in this study to support this explanation

    HIV-1 Polymerase Inhibition by Nucleoside Analogs: Cellular- and Kinetic Parameters of Efficacy, Susceptibility and Resistance Selection

    Get PDF
    Nucleoside analogs (NAs) are used to treat numerous viral infections and cancer. They compete with endogenous nucleotides (dNTP/NTP) for incorporation into nascent DNA/RNA and inhibit replication by preventing subsequent primer extension. To date, an integrated mathematical model that could allow the analysis of their mechanism of action, of the various resistance mechanisms, and their effect on viral fitness is still lacking. We present the first mechanistic mathematical model of polymerase inhibition by NAs that takes into account the reversibility of polymerase inhibition. Analytical solutions for the model point out the cellular- and kinetic aspects of inhibition. Our model correctly predicts for HIV-1 that resistance against nucleoside analog reverse transcriptase inhibitors (NRTIs) can be conferred by decreasing their incorporation rate, increasing their excision rate, or decreasing their affinity for the polymerase enzyme. For all analyzed NRTIs and their combinations, model-predicted macroscopic parameters (efficacy, fitness and toxicity) were consistent with observations. NRTI efficacy was found to greatly vary between distinct target cells. Surprisingly, target cells with low dNTP/NTP levels may not confer hyper-susceptibility to inhibition, whereas cells with high dNTP/NTP contents are likely to confer natural resistance. Our model also allows quantification of the selective advantage of mutations by integrating their effects on viral fitness and drug susceptibility. For zidovudine triphosphate (AZT-TP), we predict that this selective advantage, as well as the minimal concentration required to select thymidine-associated mutations (TAMs) are highly cell-dependent. The developed model allows studying various resistance mechanisms, inherent fitness effects, selection forces and epistasis based on microscopic kinetic data. It can readily be embedded in extended models of the complete HIV-1 reverse transcription process, or analogous processes in other viruses and help to guide drug development and improve our understanding of the mechanisms of resistance development during treatment

    Self-Mating in the Definitive Host Potentiates Clonal Outbreaks of the Apicomplexan Parasites Sarcocystis neurona and Toxoplasma gondii

    Get PDF
    Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks

    The impact of body mass index and gender on the development of infectious complications in polytrauma patients

    Full text link
    Purpose The aim was to test the impact of body mass index (BMI) and gender on infectious complications after polytrauma. Methods A total of 651 patients were included in this retrospective study, with an Injury Severity Score (ISS) C16 and age C16 years. The sample was subdivided into three groups: BMI\25 kg/m2, BMI 25–30 kg/m2, and BMI[30 kg/m2, and a female and a male group. Infectious complications were observed for 31 days after admission. Data are given as mean ± standard errors of the means. Analysis of variance, Kruskal–Wallis test, v2 tests, and Pearson’s correlation were used for the analyses and the significance level was set at P\0.05. Results The overall infection rates were 31.0 % in the BMI\25 kg/m2 group, 29.0 % in the BMI 25–30 kg/m2 group, and 24.5 % in the BMI[30 kg/m2 group (P = 0.519). The female patients developed significantly fewer infectious complications than the male patients (26.8 vs. 73.2 %; P\0.001). The incidence of death was significantly decreased according to the BMI group (8.8 vs. 7.2 vs. 1.5 %; P\0.0001) and the female population had a significantly lower mortality rate (4.1 vs. 13.4 %; P\0.0001). Pearson’s correlations between the Abbreviated Injury Scale (AIS) score and the corresponding infectious foci were not significant. Conclusion Higher BMI seems to be protective against polytrauma-associated death but not polytrauma-associated infections, and female gender protects against both polytrauma- associated infections and death. Understanding gender-specific immunomodulation could improve the outcome of polytrauma patients

    Social preferences and network structure in a population of reef manta rays

    Get PDF
    Understanding how individual behavior shapes the structure and ecology ofpopulations is key to species conservation and management. Like manyelasmobranchs, manta rays are highly mobile and wide ranging species threatened byanthropogenic impacts. In shallow-water environments these pelagic rays often formgroups, and perform several apparently socially-mediated behaviors. Group structuresmay result from active choices of individual rays to interact, or passive processes.Social behavior is known to affect spatial ecology in other elasmobranchs, but this isthe first study providing quantitative evidence for structured social relationships inmanta rays. To construct social networks, we collected data from more than 500groups of reef manta rays over five years, in the Raja Ampat Regency of West Papua.We used generalized affiliation indices to isolate social preferences from non-socialassociations, the first study on elasmobranchs to use this method. Longer lastingsocial preferences were detected mostly between female rays. We detectedassortment of social relations by phenotype and variation in social strategies, with theoverall social network divided into two main communities. Overall network structurewas characteristic of a dynamic fission-fusion society, with differentiated relationshipslinked to strong fidelity to cleaning station sites. Our results suggest that fine-scaleconservation measures will be useful in protecting social groups of M. alfredi in theirnatural habitats, and that a more complete understanding of the social nature of mantarays will help predict population response
    corecore