30 research outputs found

    Separation of Spin and Charge Quantum Numbers in Strongly Correlated Systems

    Full text link
    In this paper we reexamine the problem of the separation of spin and charge degrees of freedom in two dimensional strongly correlated systems. We establish a set of sufficient conditions for the occurence of spin and charge separation. Specifically, we discuss this issue in the context of the Heisenberg model for spin-1/2 on a square lattice with nearest (J1J_1) and next-nearest (J2J_2) neighbor antiferromagnetic couplings. Our formulation makes explicit the existence of a local SU(2) gauge symmetry once the spin-1/2 operators are replaced by bound states of spinons. The mean-field theory for the spinons is solved numerically as a function of the ratio J2/J1J_2/J_1 for the so-called s-RVB Ansatz. A second order phase transition exists into a novel flux state for J2/J1>(J2/J1)crJ_2/J_1>(J_2/J_1)_{{\rm cr}}. We identify the range 0<J2/J1<(J2/J1)cr0<J_2/J_1<(J_2/J_1)_{\rm cr} as the s-RVB phase. It is characterized by the existence of a finite gap to the elementary excitations (spinons) and the breakdown of all the continuous gauge symmetries. An effective continuum theory for the spinons and the gauge degrees of freedom is constructed just below the onset of the flux phase. We argue that this effective theory is consistent with the deconfinement of the spinons carrying the fundamental charge of the gauge group. We contrast this result with the study of the one dimensional quantum antiferromagnet within the same approach. We show that in the one dimensional model, the spinons of the gauge picture are always confined and thus cannot be identified with the gapless spin-1/2 excitations of the quantum antiferromagnet Heisenberg model.Comment: 56 pages, RevteX 3.

    The mechanism of spin and charge separation in one dimensional quantum antiferromagnets

    Full text link
    We reconsider the problem of separation of spin and charge in one dimensional quantum antiferromagnets. We show that spin and charge separation in one dimensional strongly correlated systems cannot be described by the slave boson or fermion representation within any perturbative treatment of the interactions between the slave holons and slave spinons. The constraint of single occupancy must be implemented exactly. As a result the slave fermions and bosons are not part of the physical spectrum. Instead, the excitations which carry the separate spin and charge quantum numbers are solitons. To prove this {\it no-go} result, it is sufficient to study the pure spinon sector in the slave boson representation. We start with a short-range RVB spin liquid mean-field theory for the frustrated antiferromagnetic spin-12{1\over2} chain. We derive an effective theory for the fluctuations of the Affleck-Marston and Anderson order parameters. We show how to recover the phase diagram as a function of the frustration by treating the fluctuations non-perturbatively.Comment: 53 pages; Revtex 3.

    Tumor Associated Stromal Cells Play a Critical Role on the Outcome of the Oncolytic Efficacy of Conditionally Replicative Adenoviruses

    Get PDF
    The clinical efficacy of conditionally replicative oncolytic adenoviruses (CRAd) is still limited by the inefficient infection of the tumor mass. Since tumor growth is essentially the result of a continuous cross-talk between malignant and tumor-associated stromal cells, targeting both cell compartments may profoundly influence viral efficacy. Therefore, we developed SPARC promoter-based CRAds since the SPARC gene is expressed both in malignant cells and in tumor-associated stromal cells. These CRAds, expressing or not the Herpes Simplex thymidine kinase gene (Ad-F512 and Ad(I)-F512-TK, respectively) exerted a lytic effect on a panel of human melanoma cells expressing SPARC; but they were completely attenuated in normal cells of different origins, including fresh melanocytes, regardless of whether cells expressed or not SPARC. Interestingly, both CRAds displayed cytotoxic activity on SPARC positive-transformed human microendothelial HMEC-1 cells and WI-38 fetal fibroblasts. Both CRAds were therapeutically effective on SPARC positive-human melanoma tumors growing in nude mice but exhibited restricted efficacy in the presence of co-administered HMEC-1 or WI-38 cells. Conversely, co-administration of HMEC-1 cells enhanced the oncolytic efficacy of Ad(I)-F512-TK on SPARC-negative MIA PaCa-2 pancreatic cancer cells in vivo. Moreover, conditioned media produced by stromal cells pre-infected with the CRAds enhanced the in vitro viral oncolytic activity on pancreatic cancer cells, but not on melanoma cells. The whole data indicate that stromal cells might play an important role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses

    Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association

    Get PDF
    The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    First Synthesis of (20S) 3β,16β-Dihydroxy-5-pregnen-20,16carbolactone (Diosgeninlactone)

    No full text
    Abstract: Diosgeninlactone (1), a natural product from Solanum vespertilio, was stereoselectively synthesized in high yield from 3β-hydroxy-5-androstene

    Unusual abundant ions in mass spectra of bifunctional thiols

    No full text
    Mass spectra of omega-merkaptoesters obtained by electron impact ionization at 70 eV showed important ions at m/z 60, 74 and 88. These ions may be useful for diagnosis and could be explained as cyclic sulfur-containg structures. The fact that these ions are neglegible in the spectra of simple primary ions suggests that in the mentioned bifunctional thiols as well as in the parent alpha, omega-hydroxyalkanethiols, the existence of an additional functional group allows the formation of the cyclic ions. Such structures are also proposed to explain some ions observed in mass spectra of 3-mercpato-1,2-propanediol 1-O-acyl derivatives. Fil: Iglesias, Luis Emilio. Universidad Nacional de Quilmes; ArgentinaFil: Baldessari, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Gros, Eduardo G.. No especifica
    corecore