34 research outputs found

    Histone Deacetylase 3 Depletion in Osteo/Chondroprogenitor Cells Decreases Bone Density and Increases Marrow Fat

    Get PDF
    Histone deacetylase (Hdac)3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO) mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health

    Problematic Facebook use and problematic video gaming as mediators of relationship between impulsivity and life satisfaction among female and male gamers

    Get PDF
    Over the past few decades, many new technologies have emerged, such as portable computers, the internet and smartphones, which have contributed to improving the lives of individuals. While the benefits of these new technologies are overwhelmingly positive, negative consequences are experienced by a minority of individuals. One possible negative aspect of new technologies is their problematic use due to impulsive use which may lead to lower life satisfaction. The present study investigated the mediating role of problematic video gaming (PVG) and problematic Facebook use (PFU) in the relationship between impulsivity dimensions and life satisfaction as well as the relationship between impulsivity dimensions and problematic behaviors. Additionally, the potential impact of gender differences was also examined. The study comprised 673 gamers (391 females) aged 17–38 years (M = 21.25 years, SD = 2.67) selected from 1365 individuals who completed an offline survey. PFU was assessed using the Facebook Intrusion Scale, and PVG was assessed using the nine-item Internet Gaming Disorder Scale–Short-Form (IGDS9-SF). Impulsivity dimensions such as attention, cognitive instability, motor, perseverance, self-control, and cognitive complexity were assessed using the Barratt Impulsiveness Scale (BIS-11), and life satisfaction was assessed using the Satisfaction With Life Scale (SWLS). Depending on the specific impulsivity dimension, findings showed both positive and negative relationships between impulsivity and life satisfaction. Attention and perseverance subtypes of impulsivity were primarily associated with problematic behaviors. Additionally, cognitive complexity was associated with PFU among female gamers, whereas cognitive instability was associated with PVG among male gamers. Additionally, PVG was primarily associated with lower life satisfaction. However, there was no mediation effects between impulsivity dimensions and life satisfaction via PFU or PVG. These findings provide a better understanding of the relationship between problematic behaviors, life satisfaction, and impulsivity among gamers and the differences between male and female gamers

    T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments

    Full text link
    It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells
    corecore