35 research outputs found
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
Nitrogen rate strategies for reducing yield-scaled nitrous oxide emissions in maize
Mitigating nitrogen (N) losses from agriculture without negatively impacting crop productivity is a pressing environmental and economic challenge. Reductions in N fertilizer rate are often highlighted as a solution, yet the degree to which crop yields and economic returns may be impacted at the field-level remains unclear, in part due to limited data availability. Farmers are risk averse and potential yield losses may limit the success of voluntary N loss mitigation protocols, thus understanding field-level yield tradeoffs is critical to inform policy development. Using a case study of soil N2O mitigation in the US Midwest, we conducted an ex-post assessment of two economic and two environmental N rate reduction strategies to identify promising practices for maintaining maize yields and economic returns while reducing N2O emissions per unit yield (i.e. yield-scaled emissions) compared to an assumed baseline N input level. Maize yield response data from 201 on-farm N rate experiments were combined with an empirical equation predicting N2O emissions as a function of N rate. Results indicate that the economic strategy aimed at maximizing returns to N (MRTN) led to moderate but consistent reductions in yield-scaled N2O emissions with small negative impacts on yield and slight increases in median returns. The economic optimum N rate strategy reduced yield-scaled N2O emissions in 75% of cases but increased them otherwise, challenging the assumption that this strategy will automatically reduce environmental impacts per unit production. Both environmental strategies, one designed to increase N recovery efficiency and one to balance N inputs with grain N removal, further reduced yield-scaled N2O emissions but were also associated with negative yield penalties and decreased returns. These results highlight the inherent tension between achieving agronomic and economic goals while reducing environmental impacts which is often overlooked in policy discussions. To enable the development of more scalable environmental N loss mitigation strategies, yield tradeoffs occurring at the critical point of adoption (i.e. the farm-level) should be considered
Modeling Inorganic Soil Nitrogen Status in Maize Agroecosystems
Core Ideas DSSAT was calibrated for simulating soil N concentration during the maize growing season. Two-step validation included research experiments and 49 commercial maize fields. Model performance was fair in predicting SOM mineralization and N management impacts. The model captured effects of early season rainfall on soil N variability across sites. Farmers have limited knowledge of inorganic soil nitrogen (N) concentration during maize (Zea mays L.) growth in the US Midwest, particularly after periods of wet spring weather. The objectives of this study were to calibrate the Decision Support System for Agrotechnology Transfer (DSSAT) model for predicting inorganic soil N concentration using data from three field experiments in Illinois, to evaluate model performance against three independent sites and additional data from 49 commercial maize fields, and to assess the impacts of rainfall variability on the predicted decrease in soil N concentration early in the growing season. Model calibration included adjustments to soil organic matter (SOM) decomposition parameters based on predicted soil organic carbon concentration (obtained from gSSURGO) and soil drainage rates. Model performance was considered “fair” in predicting SOM mineralization dynamics and the effects of fall vs. spring N fertilizer application across the validation datasets (normalized RMSE, 21.2–25.7%). The model also captured the variability in soil N concentration across 49 commercial fields (R2 = 0.68–0.88; slope, 0.99–1.24), with higher cumulative rainfall from January to July (>800 mm) reducing predicted soil N availability compared with fields receiving less rainfall (500–600 mm). Results suggest that DSSAT has the potential to estimate soil N availability across variable weather patterns, soil properties, and fertilizer management scenarios in Illinois. However, future work is needed to further improve model accuracy, especially if it is to be used as a decision support tool for farmers
Recommended from our members
Exploring the relationships between greenhouse gas emissions, yields, and soil properties in cropping systems
Relationships between greenhouse gas emissions, yields, and soil properties are not well known. Utilizing two datasets from long-term cropping systems in Illinois, USA, our we aim to address these knowledge gaps. The objective of this study was to explore the relationships between the physical and chemical properties and greenhouse gas (GHG) emissions of soil, and cash crop yields over a four-year time-period and following 15 years of treatment implementation in Illinois, USA. The experimental layout was a split-plot arrangement involving rotation and tillage treatments in a randomized complete block design with four replications. The studied crop rotations were continuous corn [Zea mays L.] (CCC), corn-soybean [Glycine max (L.) Merr.] (CS), continuous soybean (SSS), and corn-soybean-wheat [Triticum aestivum L.] (CSW), with each phase being present for every year. The tillage options were chisel tillage (T) and no-tillage (NT). We used an array of multivariate approaches to analyze both of our datasets that included 31 soil properties, GHG emissions (N2 O, CO2, and CH4 ) and cash crop yields. The results from our analyses indicate that N2 O emissions are associated with a low soil pH, an increased Al concentration, the presence of soil nitrate throughout the growing season, an increase in plant available water (PAW) and an increased soil C concentration. Likewise, soil CO2 respiration was correlated with low pH, elevated Al concentrations, low Ca, increased PAW, higher levels of microbial biomass carbon (MBC), and lower water aggregate stability (WAS). Emissions of CH4 were associated with increased levels of MBC. Lastly, the yield index (YdI) was correlated with lower levels of soil Ca and available P and lower values of WAS. The association between high YdI and lower WAS can be attributed to tillage, as tillage lowers WAS, but increases yields in highly productive cropping systems in the Midwest
Recommended from our members
Soil N2O emissions as affected by long-term residue removal and no-till practices in continuous corn
The environmental consequences of residue removal practices to support cellulosic biofuel production remain poorly understood. In the U.S. Midwest, corn (Zea mays L.) stover removal combined with no-till practices may increase or decrease soil N2O emissions by influencing soil moisture, temperature, and nutrient dynamics, yet empirical evidence from long-term field experiments is inconsistent. We investigated the effects of residue management (residue retained or removed) and tillage (chisel-till or no-till) on cumulative soil nitrous oxide (N2O) emissions, grain yield, and yield-scaled N2O emissions in a 3-year study initiated 10 years after treatment implementation in a long-term, continuous corn experiment in Illinois, United States. Crop yields were affected by treatment in only one of three study years, with the combination of residue removal and no-till reducing yields compared to both chisel-till treatments. Cumulative N2O emissions, soil inorganic N concentrations, and yield-scaled N2O emissions differed over the 3-year period and were significantly affected by tillage, with no response to residue management. In 2 years, no-till decreased cumulative N2O emissions and yield-scaled N2O emissions by an average of 64% and 60%, respectively. Correlations between daily N2O fluxes and soil moisture, temperature, and inorganic N concentrations suggested that the relative importance of these variables changed depending on year and treatment. While more research across a range of sites and management practices is needed, our findings support previous studies which have challenged IPCC methodology assumptions regarding the effects of residue removal on N2O emissions. We conclude there is inherent difficulty in predicting the impacts of residue removal due to the complexity of soil processes underlying N2O emissions coupled with inter-annual weather variability in this rainfed continuous corn system. Future efforts to evaluate the net greenhouse gas emissions of cellulosic biofuel production may benefit from accounting for this uncertainty
In field-grown coffee trees source–sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function
Perturbations of the source–sink balances were performed in field-grown coffee (Coffea arabica) trees to investigate the possible role of carbohydrates in feedback regulation of photosynthesis. Four treatments were applied at the whole-plant level: (i) complete defruiting and maintenance of the full leaf area, (ii) the half crop load and full leaf area, (iii) the full crop load and full leaf area and (iv) the full crop load and half leaf area. Sampling and measurements were performed twice during the phase of dry matter accumulation of fruits. Gas exchange, chlorophyll a fluorescence, carbon isotope labelling and steady-state metabolite measurements were assessed in source leaves. The average rate of net photosynthetic rate (A) and stomatal conductance (g s) were larger (> 50%), and carbon isotope composition ratio was lower, in trees with a full crop load and half leaf area than in defruited trees, with individuals of the other two treatments showing intermediate values. However, differences in A seem unlikely to have been caused either by photochemical impairments or a direct
end-product-mediated feedback down-regulation of photosynthesis. It is proposed that the decreased A in defruited coffee trees was independent of carbon metabolism and was rather directly related to a lower CO 2 availability coupled to lower gs