1,479 research outputs found

    What is the real impact of acute kidney injury?

    Get PDF
    Background: Acute kidney injury (AKI) is a common clinical problem. Studies have documented the incidence of AKI in a variety of populations but to date we do not believe the real incidence of AKI has been accurately documented in a district general hospital setting. The aim here was to describe the detected incidence of AKI in a typical general hospital setting in an unselected population, and describe associated short and long-term outcomes. Methods: A retrospective observational database study from secondary care in East Kent (adult catchment population of 582,300). All adult patients (18 years or over) admitted between 1st February 2009 and 31st July 2009, were included. Patients receiving chronic renal replacement therapy (RRT), maternity and day case admissions were excluded. AKI was defined by the acute kidney injury network (AKIN) criteria. A time dependent risk analysis with logistic regression and Cox regression was used for the analysis of in-hospital mortality and survival. Results: The incidence of AKI in the 6 month period was 15,325 pmp/yr (adults) (69% AKIN1, 18% AKIN2 and 13% AKIN3). In-hospital mortality, length of stay and ITU utilisation all increased with severity of AKI. Patients with AKI had an increase in care on discharge and an increase in hospital readmission within 30 days. Conclusions: This data comes closer to the real incidence and outcomes of AKI managed in-hospital than any study published in the literature to date. Fifteen percent of all admissions sustained an episode of AKI with increased subsequent short and long term morbidity and mortality, even in those with AKIN1. This confers an increased burden and cost to the healthcare economy, which can now be quantified. These results will furnish a baseline for quality improvement projects aimed at early identification, improved management, and where possible prevention, of AKI

    From Rational Bubbles to Crashes

    Full text link
    We study and generalize in various ways the model of rational expectation (RE) bubbles introduced by Blanchard and Watson in the economic literature. First, bubbles are argued to be the equivalent of Goldstone modes of the fundamental rational pricing equation, associated with the symmetry-breaking introduced by non-vanishing dividends. Generalizing bubbles in terms of multiplicative stochastic maps, we summarize the result of Lux and Sornette that the no-arbitrage condition imposes that the tail of the return distribution is hyperbolic with an exponent mu<1. We then extend the RE bubble model to arbitrary dimensions d and, with the renewal theory for products of random matrices applied to stochastic recurrence equations, we extend the theorem of Lux and Sornette to demonstrate that the tails of the unconditional distributions follow power laws, with the same asymptotic tail exponent mu<1 for all assets. Two extensions (the crash hazard rate model and the non-stationary growth rate model) of the RE bubble model provide ways of reconciliation with the stylized facts of financial data. The later model allows for an understanding of the breakdown of the fundamental valuation formula as deeply associated with a spontaneous breaking of the price symmetry. Its implementation for multi-dimensional bubbles explains why the tail index mu seems to be the same for any group af assets as observed empirically. This work begs for the introduction of a generalized field theory which would be able to capture the spontaneous breaking of symmetry, recover the fundamental valuation formula in the normal economic case and extend it to the still unexplored regime where the economic growth rate is larger than the discount growth rate.Comment: Latex 27 pages with 3 eps figur

    Monovalent maleimide functionalization of gold nanoparticles via copper-free click chemistry

    Get PDF
    A single maleimide was installed onto the self-assembled monolayer of gold nanoparticles by copper-free click chemistry. Simple covalent biofunctionalisation is demonstrated by coupling fibroblast growth factor 2 and an oligosaccharide in a 1 : 1 stoichiometry by thiol-Michael addition

    Fractional power-law susceptibility and specific heat in low temperature insulating state of o-TaS_{3}

    Full text link
    Measurements of the magnetic susceptibility and its anisotropy in the quasi-one-dimensional system o-TaS_{3} in its low-T charge density wave (CDW) ground state are reported. Both sets of data reveal below 40 K an extra paramagnetic contribution obeying a power-law temperature dependence \chi(T)=AT^{-0.7}. The fact that the extra term measured previously in specific heat in zero field, ascribed to low-energy CDW excitations, also follows a power law C_{LEE}(0,T)=CT^{0.3}, strongly revives the case of random exchange spin chains. Introduced impurities (0.5% Nb) only increase the amplitude C, but do not change essentially the exponent. Within the two-level system (TLS) model, we estimate from the amplitudes A and C that there is one TLS with a spin s=1/2 localized on the chain at the lattice site per cca 900 Ta atoms. We discuss the possibility that it is the charge frozen within a soliton-network below the glass transition T_{g}~40 K determined recently in this system.Comment: 7 pages, 3 figures, submitted to Europhysics Letter

    A Quantitative Look at Fluorosis, Fluoride Exposure, and Intake in Children Using a Health Risk Assessment Approach

    Get PDF
    The prevalence of dental fluorosis in the United States has increased during the last 30 years. In this study, we used a mathematical model commonly employed by the U.S. Environmental Protection Agency to estimate average daily intake of fluoride via all applicable exposure pathways contributing to fluorosis risk for infants and children living in hypothetical fluoridated and non-fluoridated communities. We also estimated hazard quotients for each exposure pathway and hazard indices for exposure conditions representative of central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. The exposure pathways considered were uptake of fluoride via fluoridated drinking water, beverages, cow’s milk, foods, and fluoride supplements for both age groups. Additionally, consumption of infant formula for infants and inadvertent swallowing of toothpaste while brushing and incidental ingestion of soil for children were also considered. The cumulative daily fluoride intake in fluoridated areas was estimated as 0.20 and 0.11 mg/kg-day for RME and CTE scenarios, respectively, for infants. On the other hand, the RME and CTE estimates for children were 0.23 and 0.06 mg/kg-day, respectively. In areas where municipal water is not fluoridated, our RME and CTE estimates for cumulative daily average intake were, respectively, 0.11 and 0.08 mg/kg-day for infants and 0.21 and 0.06 mg/kg-day for children. Our theoretical estimates are in good agreement with measurement-based estimates reported in the literature. Although CTE estimates were within the optimum range for dental caries prevention, the RME estimates were above the upper tolerable intake limit. This suggests that some children may be at risk for fluorosis
    corecore