1,228 research outputs found

    Proteolysis Influences Tenderness of Aged Pork Loins

    Get PDF
    Aged pork loins were selected to have similar ultimate pH, color, lipid content, and purge. The star probe values (kg) obtained from these loins were evaluated and loins were sorted into either a low star probe (LSP) group or a high star probe (HSP) group. Loins were evaluated for autolysis of calpain-1 and degradation of troponin-T, desmin, and titin. Results showed calpain-1 was completely autolyzed in all samples. LSP pork loins exhibited more degradation of troponin-T, desmin, and titin, demonstrating proteolysis influences measured tenderness in aged pork

    Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical gauge fields

    Get PDF
    We introduce a scheme that combines photon-assisted tunneling by a moving optical lattice with strong Hubbard interactions, and allows for the quantum simulation of paradigmatic quantum many-body models. We show that, in a certain regime, this quantum simulator yields an effective Hubbard Hamiltonian with tunable bond-charge interactions, a model studied in the context of strongly-correlated electrons. In a different regime, we show how to exploit a correlated destruction of tunneling to explore Nagaoka ferromagnetism at finite Hubbard repulsion. By changing the photon-assisted tunneling parameters, we can also obtain a t-J model with independently controllable tunneling t, super-exchange interaction J, and even a Heisenberg-Ising anisotropy. Hence, the full phase diagram of this paradigmatic model becomes accessible to cold-atom experiments, departing from the region t _ J allowed by standard single-band Hubbard Hamiltonians in the strong-repulsion limit. We finally show that, by generalizing the photon-assisted tunneling scheme, the quantum simulator yields models of dynamical Gauge fields, where atoms of a given electronic state dress the tunneling of the atoms with a different internal state, leading to Peierls phases that mimic a dynamical magnetic field

    Natural Analogue Constraints on Europa's Non-ice surface Material

    Get PDF
    Non-icy material on the surface of Jupiter’s moon Europa is hypothesised to have originated from its subsurface ocean, and thus provide a record of ocean composition and habitability. The nature of this material is debated, but observations suggest that it comprises hydrated sulfate and chloride salts. Analogue spectroscopic studies have previously focused on single phase salts under controlled laboratory conditions. We investigated natural salts from perennially cold (<0 °C) hypersaline springs, and characterised their reflectance properties at 100 K, 253 K and 293 K. Despite similar major ion chemistry, these springs form mineralogically diverse deposits, which when measured at 100 K closely match reflectance spectra from Europa. In the most sulfate-rich samples, we find spectral features predicted from laboratory salts are obscured. Our data are consistent with sulfate-dominated europan non-icy material, and further, show that the emplacement of endogenic sulfates on Europa’s surface would not preclude a chloride-dominated ocean

    Singlet Portal to the Hidden Sector

    Get PDF
    Ultraviolet physics typically induces a kinetic mixing between gauge singlets which is marginal and hence non-decoupling in the infrared. In singlet extensions of the minimal supersymmetric standard model, e.g. the next-to-minimal supersymmetric standard model, this furnishes a well motivated and distinctive portal connecting the visible sector to any hidden sector which contains a singlet chiral superfield. In the presence of singlet kinetic mixing, the hidden sector automatically acquires a light mass scale in the range 0.1 - 100 GeV induced by electroweak symmetry breaking. In theories with R-parity conservation, superparticles produced at the LHC invariably cascade decay into hidden sector particles. Since the hidden sector singlet couples to the visible sector via the Higgs sector, these cascades necessarily produce a Higgs boson in an order 0.01 - 1 fraction of events. Furthermore, supersymmetric cascades typically produce highly boosted, low-mass hidden sector singlets decaying visibly, albeit with displacement, into the heaviest standard model particles which are kinematically accessible. We study experimental constraints on this broad class of theories, as well as the role of singlet kinetic mixing in direct detection of hidden sector dark matter. We also present related theories in which a hidden sector singlet interacts with the visible sector through kinetic mixing with right-handed neutrinos.Comment: 12 pages, 5 figure

    Comparison of two methods based on cross-sectional data for correcting corpus uterine cancer incidence and probabilities

    Get PDF
    BACKGROUND: Two methods are presented for obtaining hysterectomy prevalence corrected estimates of invasive cancer incidence rates and probabilities of the corpus uterine. METHODS: The first method involves cross-sectional hysterectomy data from the Utah Hospital Discharge Data Base and mortality data applied to life-table methods. The second involves hysterectomy prevalence estimates obtained directly from the Utah Behavior Risk Factor Surveillance System (BRFSS) survey. RESULTS: Hysterectomy prevalence estimates based on the first method are lower than those obtained from the second method through age 74, but higher in the remaining ages. Correction for hysterectomy prevalence is greatest among women ages 75–79. In this age group, the uncorrected rate is 125 (per 100,000) and the corrected rate based on the life-table method is 223 using 1995–97 data, 243 using 1992–94 data, and 228 from the survey method. The uncorrected lifetime probability of developing corpus uterine cancer is 2.6%; the corrected probability from the life-table method using 1995–97 data is 4.2%, using 1992–94 data is 4.5%; and based on prevalence data from the survey method is 4.6%. CONCLUSIONS: Both methods provide reasonable hysterectomy prevalence estimates for correcting corpus uterine cancer rates and probabilities. Because of declining trends in hysterectomy in recent decades, corrected estimates from the life-table method are less pronounced than those based on the survey method. These methods may be useful for obtaining corrected uterine cancer rates and probabilities in areas of the world that do not have sufficient years of hysterectomy data to directly compute prevalence

    Quantum Graphs: A simple model for Chaotic Scattering

    Full text link
    We connect quantum graphs with infinite leads, and turn them to scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduce quite well the predictions of appropriately defined Random Matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between Random Matrix Theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the fore-front of the research in chaotic scattering and related fields.Comment: 28 pages, 13 figures, submitted to J. Phys. A Special Issue -- Random Matrix Theor

    Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset

    Get PDF
    Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850

    Associations of common polymorphisms in GCKR with type 2 diabetes and related traits in a Han Chinese population: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that variants in the glucokinase regulatory protein gene (<it>GCKR</it>) were associated with type 2 diabetes and dyslipidemia. The purpose of this study was to examine whether tag single nucleotide polymorphisms (SNPs) in the <it>GCKR </it>region were associated with type 2 diabetes and related traits in a Han Chinese population and to identify the potential mechanisms underlying these associations.</p> <p>Methods</p> <p>We investigated the association of polymorphisms in the <it>GCKR </it>gene with type 2 diabetes by employing a case-control study design (1118 cases and 1161 controls). Four tag SNPs (rs8179206, rs2293572, rs3817588 and rs780094) with pairwise r<sup>2 </sup>> 0.8 and minor allele frequency > 0.05 across the <it>GCKR </it>gene and its flanking regions were studied and haplotypes were constructed. Genotyping was performed by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy using a MassARRAY platform.</p> <p>Results</p> <p>The G alleles of <it>GCKR </it>rs3817588 and rs780094 were associated with an increased risk of type 2 diabetes after adjustment for year of birth, sex and BMI (OR = 1.24, 95% CI 1.08-1.43, p = 0.002 and OR = 1.22, 95% CI 1.07-1.38, p = 0.002, respectively). In the non-diabetic controls, the GG carriers of rs3817588 and rs780094 were nominally associated with a lower plasma triglyceride level compared to the AA carriers after adjustment for year of birth, sex and BMI (p for trend = 0.00004 and 0.03, respectively). Furthermore, the association of rs3817588 with plasma triglyceride level was still significant after correcting for multiple testing.</p> <p>Conclusions</p> <p>The rs3817588 A/G polymorphism of the <it>GCKR </it>gene was associated with type 2 diabetes and plasma triglyceride level in the Han Chinese population.</p
    corecore