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Key Points: 16 

• Low-temperature hydrated salts from the Canadian Arctic provide geochemical and 17 

spectral analogues for europan surface material. 18 

• Qualitatively different deposits can form from fluids with similar major ion chemistry 19 

• Endogenic sulfates on Europa would not rule out a chloride-dominated ocean. 20 
  21 
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Abstract 22 

Non-icy material on the surface of Jupiter’s moon Europa is hypothesised to have originated from 23 

its subsurface ocean, and thus provide a record of ocean composition and habitability. The nature 24 

of this material is debated, but observations suggest that it comprises hydrated sulfate and chloride 25 

salts. Analogue spectroscopic studies have previously focused on single phase sal ts under 26 

controlled laboratory conditions. We investigated natural salts from perennially cold (<0 °C) 27 

hypersaline springs, and characterised their reflectance properties at 100 K, 253 K and 293 K. 28 

Despite similar major ion chemistry, these springs form mineralogically diverse deposits, which 29 

when measured at 100 K closely match reflectance spectra from Europa. In the most sulfate -rich 30 

samples, we find spectral features predicted from laboratory salts are obscured. Our data are 31 

consistent with sulfate-dominated europan non-icy material, and further, show that the 32 

emplacement of endogenic sulfates on Europa’s surface would not preclude a chloride -dominated 33 

ocean. 34 

 35 

Plain Language Summary 36 

 37 

Europa, a moon of Jupiter, has become a priority target in the search for life off the Earth, due to 38 

the presence of a liquid water ocean under its icy shell. Salts on the moon’s surface might originate 39 

from this ocean, and therefore offer a way of studying the ocean without requiring direct access. 40 

Our knowledge of these salts comes from comparing spacecraft measurements to pure salts 41 

produced in laboratories. We have studied natural salts from hypersaline springs in the Canadian 42 

Arctic as an alternative, complementary approach. Measuring samples from these deposits at 43 

europan surface temperatures, several unexpected properties were observed, including the absence 44 

of spectral details predicted by previous laboratory studies. This challenges some of the estimates 45 

of europan surface composition. Natural analogues such as these will form part of an integrative 46 

approach to understanding data from upcoming missions, such as NASA’s Europa Clipper and 47 

ESA’s JUICE.  48 
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1. Introduction 49 

In the coming decade, the European Space Agency’s JUpiter ICy moons Explorer (JUICE) and 50 

the NASA Europa Clipper will study the icy moon Europa to better understand its surface and 51 

subsurface activity, and potential habitability. Europa hosts a liquid water layer beneath an icy 52 

crust (Carr et al., 1998), with a depth of up to 100 km (Nimmo & Pappalardo, 2016). The 53 

interaction between this ocean and a silicate core could generate the necessary chemical conditions 54 

for life, meaning Europa may harbour the largest habitable volume of water in the solar system 55 

(Nimmo & Pappalardo, 2016).  56 

Constraining ocean composition is crucial to understanding the evolution and astrobiological 57 

potential of Europa. The europan surface is predominantly water ice (Carlson et al., 2009); 58 

however spatially heterogenous, non-icy material exists, first studied by the Galileo spacecraft’s 59 

Near Infrared Mapping Spectrometer (NIMS) (McCord et al., 1999). This material is hypothesised 60 

to have originated, either wholly or partly, from the subsurface ocean, becoming frozen into 61 

exhumed ice or delivered directly to the surface through cryovolcanism (Schmidt et al., 2011; 62 

Prockter et al., 2017; Howell & Pappalardo, 2018). The existence of putative cryovolcanic plumes 63 

on Europa (Jia et al., 2018; Roth et al., 2014) further suggest that material from Europa’s interior 64 

is actively emplaced onto the surface. This surface material can provide a record of ocean 65 

chemistry accessible to orbital or landed spacecraft. 66 

Multiple observations of Europa’s non-icy material exist, showing visible-near-infrared (vis-NIR) 67 

evidence for hydrated compounds (Brown & Hand, 2013; Carlson et al., 2005; Dalton et al., 2012; 68 

Fischer et al., 2015, 2016; Ligier et al., 2016; McCord et al., 1999). Such material can form through 69 

exogenic and radiolytic processes, salt precipitation from subsurface brines, or a combination of 70 

these two mechanisms. Previous studies have attempted to explain the shape of europan non -icy 71 
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spectra with numerical linear mixes of pure salt spectra (Carlson et al., 2005; Dalton, 2007; Ligier 72 

et al., 2016), or with experimentally-produced salt assemblages (Orlando et al., 2005). Based on 73 

these works, hydrated sulfates such as mirabilite (Na2SO4.10H2O) and sulfuric acid hydrate have 74 

been proposed as major components of deposits on the trailing hemisphere (Carlson et al., 2005; 75 

Dalton et al., 2012; Shirley et al., 2010), whereas chloride salts may contribute to spectral 76 

signatures of ‘chaos’ regions (Brown & Hand, 2013; Fischer et al., 2016).  77 

The study of natural analogues provides a complementary approach, particularly for understanding 78 

spectral behaviour of mineralogically heterogeneous precipitates. Axel Heiberg Island in the 79 

Canadian Arctic hosts unique hypersaline, sub-zero (< 0 °C) springs that precipitate hydrated 80 

sodium sulfates and chloride salts, along with other low temperature phases (Battler et al., 2013; 81 

Ward & Pollard, 2018). We investigated the vis-NIR spectral properties and geochemical context 82 

of these natural hydrated salt assemblages and discuss their relevance for the exploration of 83 

Europa. 84 

 85 

2. Field Areas 86 

Axel Heiberg Island (AHI), Nunavut, Canada (Fig. 1A) hosts Carboniferous evaporite  diapirs 87 

(Harrison & Jackson, 2014) and thick (> 400 m) permafrost (Andersen et al., 2002). Associated 88 

with the diapirs are anoxic, perennially low-temperature (-5–8 °C) hypersaline (> 10 wt. %) springs 89 

that form assemblages of hydrated sulfate and chloride salts (Battler et al., 2013; Pollard et al., 90 

1999). The precipitation of these Europa-relevant phases makes these springs compelling natural 91 

laboratories for understanding analogous deposits on Europa. The waters of three springs, Lost 92 

Hammer, Colour Peak and Stolz, were sampled along with their associated salt deposits in July 93 
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2017 (Fig. 1) (for further details of  geologic setting see Battler et al., 2013, Ward and Pollard, 94 

2018). 95 

 96 

2.1 Lost Hammer 97 

Lost Hammer (LH) Spring (also known as Wolf Spring; Battler et al., 2013) (79.076856, -98 

90.210472) emerges as a single outlet from the valley floor, approximately 500 m from the base 99 

of Wolf Diapir (Fig. 1B). A large dome of salt exists around the vent, flanked by a salt apron with 100 

terracing and layering. Brine samples and measurements were taken from the outlet, and at two 101 

downstream points. Salt samples were taken from within the outlet dome and from the salt apron 102 

(Fig. S1). 103 

 104 

2.2 Colour Peak 105 

Colour Peak (CP) springs (79.38, -91.27) emerge as several outlets from the side of Colour Peak 106 

Diapir (Fig. 1C). Precipitates exist as sintered terraces exhibiting green and black colouration. 107 

White crusts are visible at the edges of channels and pools. Brine samples and measurements were 108 

taken at five spring outlets, and mineral samples were taken from terraces and peripheral 109 

precipitates (Fig. S1).  110 

 111 

2.3 Stolz 112 

Stolz (STZ) springs (79.090117, -87.048248) emerges from two outlets on Stolz Diapir (Fig. 1). 113 

The springs meet at a confluence 20 m downstream from the outlets, precipitating an extensive 114 
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salt apron with an approximate thickness of 5 m and downslope extent of ~800 m. During summer, 115 

the drainage streams flow under this apron into a ‘salt cave’. Salts  form grey and white terraces 116 

(Fig. 1E), with the dry remains of large (~10 m diameter) pools on the apron. Brine samples and 117 

measurements were taken at both outlets and at the confluence. Salts were sampled at the entrance 118 

to the salt cave and from the apron surface (Fig. S1).  119 

 120 

3. Materials and methods 121 

3.1 Sampling 122 

Brine samples were 0.22 µm-filtered into four 15 ml aliquots for stable isotopes, anion and cation 123 

analysis, and aqueous sulfide measurements. Samples for cation analyses were acidified to a final 124 

concentration of 1 % HNO3. Temperature, pH and dissolved oxygen (DO) concentrations were 125 

measured using a Mettler Toledo FiveGo probe. Salt mineral precipitates were collected into 126 

sample bags and stored at ambient arctic temperatures, shipped chilled (4 °C), and stored at 4 °C 127 

until analysis. 128 

 129 

3.2 Quantification of major ions 130 

Cations in spring fluids were measured with ICP-AES using a Prodigy7 (Teledyne-Leeman) AES 131 

system at the Open University, UK. Chloride and sulfate were measured in triplicate with ion -132 

chromatography using a Metrohm 930 IC system fitted with a 150 mm Metrosep Asupp5 133 

separation column (4 mm bore). Relative standard deviations of triplicate  measurements were ≤0.1 134 

% for all measured anions. Brines were diluted by a factor between 10 3 and 104 in ultrapure 135 
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deionised water prior to analysis. Aqueous sulfide was quantified spectrophotometrically in 136 

triplicate using the methylene blue assay (Cline, 1969).  137 

 138 

3.3 Oxygen and hydrogen isotopes in waters 139 

Water-bound 16O, 18O, H, and D were measured simultaneously by cavity ringdown spectrometry 140 

using a L2140-i Picarro water isotope analyser at the University of St. Andrews, United Kingdom. 141 

Seven repeat measurements were averaged for each sample, with a typical precision of ±0.013 ‰ 142 

(1 SD.). See supplementary methods for more details. 143 

 144 

3.4 X-ray diffraction (XRD) 145 

Powder XRD patterns were recorded at Drochaid Research Services, Ltd. (St Andrews, UK) at 146 

room temperature from 10° to 110° (2θ) using a Panalytical X’Pert Pro X-ray diffractometer. 147 

Samples were equilibrated to room temperature and crushed as finely as possible prior to analysis. 148 

In an effort to retain hydrated phases, samples were not fully dried, therefore sieving and grain 149 

size normalisation was not possible. Because of this, Rietveld refinements are taken as semi-150 

quantitative, indicative of major and minor phases. See supplementary methods for more details. 151 

 152 

3.5 Visible-near-infrared reflectance spectroscopy 153 

Vis-NIR (0.35 to 2.5 µm) spectra from salt precipitates were collected at three temperatures: 293 154 

K (room temperature), 253 K and approximately 100 K (simulating europan surface temperature; 155 

Nimmo and Pappalardo, 2016). Spectra were acquired with an Analytical Spectral Devices 156 
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FieldSpec Pro HR spectrometer at the Planetary Spectroscopy Facility, University of Winnipeg. 157 

See supplementary methods for more details. Samples at 253 K were frozen in a  chest freezer, 158 

followed by active cooling with a Pelletier cooler after Bramble et al. (2014). Samples measured 159 

at 100 K were held in an aluminium sample cup that was immersed in liquid nitrogen and 160 

equilibrated until the liquid nitrogen ceased to boil vigorously.  161 

The 100 K spectra were resampled to (1) Galileo NIMS spectral resolution, to precisely match 162 

bandpasses in the G1ENNHILAT01 observation presented by Dalton et al. (2005) and others; (2) 163 

the Europa Clipper Mapping Infrared Spectrometer for Europa (MISE) spectral resolution (10 nm 164 

sampling from 0.8-5 µm) (Blaney et al., 2015), and (3) the JUICE Moons and Jupiter Imaging 165 

Spectrometer (MAJIS) spectral resolution (2.3 nm sampling from 0.4-1.7 µm; 6.6 nm sampling 166 

from 1.7-5.7 µm) (Langevin et al., 2013).  167 

 168 

3.6 Spectral mixing 169 

To investigate the loss of spectral detail caused by the presence of anhydrous phases, linear spectral 170 

mixes were generated to compare directly with the LH outlet sample, which has four phases in 171 

XRD patterns: anhydrous thenardite (Na2SO4) and halite (NaCl), and their hydrous counterparts 172 

mirabilite (Na2SO4.10H2O) and hydrohalite (NaCl.2H2O). Semi-quantitative XRD indicates 173 

sulfates form the major salt phase (approximately 80%) with a minor chloride salt phase 174 

(approximately 20%), and this ratio was maintained in each mix, varying the anhydrous component 175 

from 0% (fully hydrated; i.e. mirabilite and hydrohalite) to 100% (fully anhydrous; i.e. thenardite 176 

and halite). Pure phase spectra were taken from Hanley et al. (2014), Shirley et al. (2010) and the 177 

USGS spectral library (Supplementary Methods). 178 
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4. Results 179 

4.1 Aqueous geochemistry and salt mineralogy 180 

Brine compositions and salt mineralogy at the springs are consistent with published data (Battler 181 

et al., 2013; Lay et al., 2013; Omelon et al., 2006; Ward & Pollard, 2018). Across all springs, fluids 182 

are dominated by sodium and chloride and contain significant concentrations of sulfate (Fig. 2A; 183 

Table S1). LH brines contain the highest sulfate concentration of the three springs (60 mM), and 184 

the lowest temperature (-3.6 °C). CP brines are relatively warm (3.8-8.4 °C), neutral alkaline (pH 185 

6.98-7.75) and contain higher dissolved Ca2+ levels than either LH or STZ (Fig. 2B; Table S1). 186 

STZ brines are the most saline with respect to sodium (3790-3868 mM) and chloride (5213-5216 187 

mM) and possess sub-zero temperatures (-1.7 and -2.9° C). Sulfide concentrations ranged from 188 

highs of 1.86 mM at CP to lows of 0.04 mM at STZ (Table S1). The δD and δ18O of the spring 189 

brines plot close to the local meteoric water line (LMWL) (Fig. 2C). LH brine shows the lowest 190 

δ18O and δD values of the springs but is comparable to that of nearby permafrost. CP brine isotope 191 

values plot close to snowmelt on Colour Peak Diapir, in agreement with Pollard et al. (1999) (Fig. 192 

2C). The isotopic values of two snowmelt pools sampled on Stolz Diapir fall below the LMWL 193 

and show higher δ18O and δD than the STZ brines (Fig. 2C). 194 

Mineralogy (measured by XRD after raising samples to 20 °C) is dominated at LH by Na-sulfates, 195 

notably mirabilite and thenardite, with lesser contributions from chlorides (Table S2). The low-196 

temperature chloride hydrohalite is present in several samples, which  had not previously been 197 

reported by Battler et al. (2013). White crusts at CP are dominated by halite, while dark precipitates 198 

consisted primarily of gypsum (CaSO4.2H2O) and calcite (CaCO3), which are not considered likely 199 

phases at Europa. White salt assemblages at STZ contained higher abundances of Na-chloride 200 
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salts, predominantly anhydrous halite. The darker banded salts were composed of thenardite and 201 

halite, as approximately equal major phases.  202 

 203 

4.2. Visible-near-infrared spectral characteristics  204 

Representative spectra from salt precipitates at all three measured temperatures are plotted in Fig. 205 

3. The largest spectral differences are observed between 253 K and 273 K. ‘CP-green’ (dark green 206 

precipitates) show a sharpening of the major water absorption bands at 1.5 (triplet), 2.0 (doublet) 207 

and 2.2 µm (triplet) at 253 and 100 K, consistent with gypsum (Cloutis et al., 2006), which 208 

dominates this sample (Table S2) and is stable at room temperature. Spectra from ‘STZ-white’ at 209 

253 K and 100 K are consistent with hydrohalite; particularly the doublet 1.5 and 2.0 µm features 210 

(Light et al., 2016; measured at 243 K), and the 1.75 µm feature in frozen NaCl brine (Hanley et 211 

al., 2014). ‘STZ-dark’ salts display muted versions of these features. Spectra from CP-white, and 212 

all LH and STZ salts have minimal hydration features at 293 K, with overtone absorptions at 1.2 213 

and 2.2 µm absent entirely. LH spectra exhibit the 2.2 µm absorption feature as a slight shoulder 214 

to the larger and broader 2.0 µm feature, consistent with the presence of mirabilite. Salts from the 215 

interior of the outlet dome show broader absorptions, and exhibit hydration features at 1.0 and 1.2 216 

µm that are absent in salts from the surface of the salt apron. Numerical linear mixes failed to 217 

recreate LH spectra, even when all components identified by XRD were included (Fig. 4). For 218 

example, hydrohalite details were not observed in LH spectra, but were evident in spectral mixes 219 

designed to simulate LH phase abundances.  220 

 221 
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4.3. Comparisons with mission data 222 

100 K spectra resampled to match spacecraft instrument capabilities are plotted in order of 223 

decreasing resolution in Fig. 3C, D. Major absorption features in LH salts show similar asymmetry 224 

and broadening to the NIMS data from europan non-icy material. Furthermore, minima for the 225 

1.75 µm band in LH salts very closely matches the corresponding minimum of Europa’s non -icy 226 

material observed by NIMS. Band minima of the major 1.5 and 2.0 µm absorptions tend to shift 227 

to shorter wavelengths at lower spectral resolution (Fig. 3D). Spectral details such as the diagnostic  228 

gypsum triplets in CP salts and the hydrohalite doublets in STZ salts (1.5, 2.0 µm) are represented 229 

at MISE and MAJIS resolutions, but at NIMS resolution these become difficult to resolve or are 230 

absent entirely. The hydrohalite doublet at 2.0 µm in STZ-white appears as a single feature at 231 

NIMS resolution with a band minimum that closely matches data from Europa.  232 

 233 

5. Discussion 234 

5.1. Environmental controls on spring geochemistry  235 

The AHI springs provide geochemical analogues for the formation of hydrated salt deposits from 236 

subsurface fluids on icy moons. Constraining their geologic and geochemical context as well as 237 

their stability is crucial for understanding which aspects can be extrapolated for planetary 238 

exploration. The brine δ18O and δD values support the hypothesis that the AHI springs are 239 

recharged by meteoric water. Anderson et al. (2002) suggested that evaporite diapirs create 240 

conduits through permafrost that allow meteoric waters to infiltrate and dissolve deep evaporites, 241 

 

 



Confidential manuscript submitted to Geophysical Research Letters 

12 

 

buffering the spring temperatures via a dynamic equilibrium between the sub-permafrost geotherm 242 

and the permafrost itself. The behaviour of the STZ and LH systems are consistent with this idea. 243 

At both sites, δ18O and δD values of the spring brines are significantly more depleted than local 244 

snowmelt, and at LH are similar to permafrost values. This indicates a complex mechanism of 245 

water recharge to the system, potentially including local permafrost melts and more distal meteoric 246 

sources that could have experienced a longer residence time in the evaporites. At CP however, 247 

similar δD and δ18O values in the brine and snow show that contemporary melt is likely feeding 248 

the springs, consistent with interpretations by Omelon et al. (2006). This challenges the notion 249 

(Pollard et al., 1999) that long residence times are required within the evaporites and permafrost 250 

to acquire a high solute load and to buffer the spring temperatures. 251 

 252 

5.2 Implications for spectroscopic detection of salts on Europa 253 

The natural salts studied here show complex behaviours, not fully predictable from the behaviours 254 

of pure laboratory salts. Some samples, notably CP-green, CP-white and STZ-white, show 255 

sharpening of spectral detail at 253 and 100 K, predicted from pure salts. However, for most 256 

samples the main temperature-related spectral changes are associated with the loss of hydration at 257 

293 K, and not the narrowing or sharpening effects seen at low temperature with pure salts. For 258 

example, the mirabilite-dominated LH salts lack the sharpened details observed in pure mirabilite 259 

(Dalton et al., 2005), instead exhibiting smooth absorptions that span the 1.3-1.7 and 1.8-2.3 µm 260 

ranges. Achieving this ‘smoothing’ effect in previous linear mixing efforts was achieved by adding 261 

up to 65 % sulfuric acid hydrate (Carlson et al., 2005; Dalton et al., 2012). Based on LH salt 262 

spectra, which contain only Na-sulfates and chloride salts (plus trace detrital quartz), ‘smooth’ low 263 

temperature spectra do not require the addition of sulfuric acid hydrate. This does not rule out its 264 
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presence at Europa, but demonstrates it need not be such a significant component to produce the 265 

observed spectral features.  266 

Overall, LH salt spectra measured at 100 K most closely recreate the shape, breadth and depth of 267 

absorption features in NIMS non-icy spectra, including the 1.75 µm band minimum (Fig. 3D). 268 

These data therefore are consistent with an LH-like sulfate-rich composition at Europa. However, 269 

they do not rule out the presence of chlorides salts, as data from Europa show some similarity to 270 

the chloride-rich STZ samples when viewed at the lower spectral resolution of mission data. The 271 

hydrohalite doublet at 2.0 µm in STZ-white disappears at NIMS resolution, meaning that this 272 

feature would not have been detectable, even if hydrohalite were present. Recent ground -based 273 

observations with greatly improved spectral resolution (e.g., Fischer et al., 2015) lack data in the 274 

1.80-1.95 µm region, so also cannot be used to definitively eliminate hydrohalite . Future spacecraft 275 

instruments such as MISE (Europa Clipper) and MAJIS (JUICE) have sufficient resolution to 276 

capture this, and other diagnostic features, therefore these missions will reveal if europan non -icy 277 

deposits bear closer resemblance to a “LH-“ or “STZ-like” composition. 278 

Hydrohalite was detected in some LH samples by XRD (Table S2) as a minor phase, including 279 

LH-outlet. Spectral linear mixing predicts that hydrohalite should be observable in the near-280 

infrared in this sample, however apart from a subtle reflectance minimum at 1.983 μm, hydrohalite 281 

features were absent, even when the sample was measured at 100 K (Fig. 4). Incorporating 282 

spectrally featureless anhydrous phases at proportions above 50% into the mix produces similar 283 

smoothing effects, but causes features at 1.5 and 2.0 µm to lack the depth and breadth observed in 284 

LH-outlet spectra (Fig 4b). Moreover the approximate anhydrous proportion measured by XRD at 285 

room temperature (20%) provides an upper limit on anhydrous phase abundance in LH-outlet 286 

material, which will be heavily hydrated at 100 K. This demonstrates that the behaviour of natural 287 
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assemblages, which can be complex intimate mixtures of compounds and hydrations states, cannot 288 

be predicted from the additive properties of pure salts alone. If ocean-derived hydrated chlorides 289 

are present on the surface of Europa (Brown and Hand, 2013), they could be spectrally obscured 290 

by sulfates. Importantly, if sulfates are exogenic in origin (i.e., from Io’s plasma torus), this could 291 

present a problem for identifying endogenic material within surface deposits. In this case, the 1.983 292 

μm band minimum could be an important diagnostic feature of hydrohalite that is retained, albeit 293 

subtly, in sulfate deposits. 294 

 295 

5.3 Geochemical implications for Europa from natural analogues 296 

The deposits at AHI springs show that natural brines with similar major ion chemistry can 297 

precipitate different mineralogical deposits, ranging from calcite and gypsum at CP, to mirabilite 298 

and hydrohalite at LH. These dif ferences are accounted for by minor variations in the 299 

sulfate:chloride ratio of the brines, and by dissolved calcium and alkalinity (Fig. 2 ; Fig S2). CP 300 

exhibits minerals not considered likely at Europa, however their formation demonstrates how 301 

minor differences in geochemistry can produce varied mineralogies. The same may be true on a 302 

geologically diverse world such as Europa. Additionally, CP can be a useful analogue for 303 

cryovolcanic precipitates on bodies with more alkaline and carbonate-rich aqueous chemistries, 304 

such as Enceladus (Glein et al., 2015). 305 

The compositions of AHI deposits do not reflect equilibrium salt assemblages that would form if 306 

the spring brines fully crystallised, rather they represent a snapshot during this evolution (Fig. S2; 307 

Table S3). For example, despite bearing a high chloride : sulfate ratio (25; Table S1), LH salts are 308 

dominated by mirabilite and thenardite, showing that a dominantly chloride brine can form sulfate-309 
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dominated deposits. Thermodynamic models show that mirabilite forms early upon freezing or 310 

evaporation-driven concentration, while chlorides are retained in late-stage brines that can be 311 

transported away from the deposit (Fig. S2). On Europa, a chloride-dominated ocean in which 312 

sulfate is only a minor constituent may form sulfate-rich salt assemblages in a similar manner, at 313 

the surface or within the ice, while denser chloride-enriched brines migrate away (Zolotov & 314 

Shock, 2001). The discovery of endogenous sulfate salts on Europa would therefore not preclude 315 

a chloride-dominated ocean. 316 

The composition of Europa’s ocean is not well constrained, and the relative contributions of 317 

exogenic and endogenic processes to surface non-ice material are not known. Different 318 

geographical regions may harbour different compositions, reflecting different processes (Fischer 319 

et al., 2015). In one proposed scenario, chloride-dominated subsurface fluids are delivered to the 320 

surface and become progressively altered by exogenous sulfur ion bombardment (Brown and 321 

Hand, 2013). Under these circumstances, STZ-white salts represent pristine deposits, with STZ-322 

dark and the LH salt assemblages representing more altered, sulfate-rich deposits where the vis-323 

NIR signature of hydrohalite is obscured. Alternatively, if the ocean is sulfate-rich, (Kargel et al., 324 

2000) then LH salts would represent suitable analogue material for pristine endogenic deposits. 325 

The study of natural environments such as the AHI springs forms part of an integrative theoretical, 326 

experimental and analogue approach that will be critical to interpreting future mission data, both 327 

from upcoming fly-by missions as well as the under-development NASA Europa Lander project. 328 
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 457 

Fig. 1: (a) Map of Axel Heiberg Island, location of the three springs studied, and icecaps (white). 458 

(b) Aerial view of Lost Hammer spring, showing outlet and salt apron. Person for scale. (c) 459 

Terraces at Colour Peak springs and outlet channel. (d) Salt apron at Stolz Spring. Person for scale. 460 

(e) Aerial view of Stolz Springs, showing the outlets on the side of Stolz Diapir 461 
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 462 

Figure 2: AHI spring geochemistry. (a) Major anions; (b) Calcium concentration vs. pH; (c) Water 463 

isotopic composition of the springs and potential source waters. Global (G) and local (L) meteoric 464 

water lines (MWL) plotted for reference (Pollard et al., 1999). 465 

  466 
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 467 

Figure 3: Representative vis-NIR reflectance spectra of salts from the AHI saline springs. 468 

Reflectance offset for clarity. (a-b): Full (a) and continuum-removed (b) spectra at 100 K (darkest), 469 

253 K (dashed) and 293 K (lightest). Grey lines highlight H2O/OH water bands. (c-d): 470 

Representative full (c) and continuum-removed (d) spectra resampled to instrument bandpasses, 471 

ordered from top to bottom: full nm-resolved spectra, MAJIS resolution, MISE resolution, NIMS 472 

resolution. Europa non-icy endmember spectrum (black), acquired by Galileo NIMS, is 473 

reproduced from Carlson et al. (2005). Dashed lines and crosses in (b) and (d) show the positions 474 

of absorption band minima for NIMS data and AHI data, respectively. 475 

 476 
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 478 
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 480 

Figure 4: Comparison of numerically mixed spectra with LH-outlet spectra (measured at 100 K). 481 

STZ-white (at 100 K) provides the hydrohalite spectral endmember. Each mix represents an 482 

anhydrous percentage; 20% anhydrous corresponds to that measured in LH-Outlet by XRD at 20 483 

°C. (a) Vis-NIR reflectance spectra of spectral endmembers and their mixes; (b) continuum-484 

removed spectral mixes. Grey dashed lines denote the position of major hydrohalite band minima 485 

at 1452 and 1983 nm (visible in STZ-white). 486 
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