876 research outputs found

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Discrepant comorbidity between minority and white suicides: a national multiple cause-of-death analysis

    Get PDF
    Abstract Background Clinician training deficits and a low and declining autopsy rate adversely impact the quality of death certificates in the United States. Self-report and records data for the general population indicate that proximate mental and physical health of minority suicides was at least as poor as that of white suicides. Methods This cross-sectional mortality study uses data from Multiple Cause-of-Death (MCOD) public use files for 1999–2003 to describe and evaluate comorbidity among black, Hispanic, and white suicides. Unintentional injury decedents are the referent for multivariate analyses. Results One or more mentions of comorbid psychopathology are documented on the death certificates of 8% of white male suicides compared to 4% and 3% of black and Hispanic counterparts, respectively. Corresponding female figures are 10%, 8%, and 6%. Racial-ethnic discrepancies in the prevalence of comorbid physical disease are more attenuated. Cross-validation with National Violent Death Reporting System data reveals high relative underenumeration of comorbid depression/mood disorders and high relative overenumeration of schizophrenia on the death certificates of both minorities. In all three racial-ethnic groups, suicide is positively associated with depression/mood disorders [whites: adjusted odds ratio (AOR) = 31.9, 95% CI = 29.80–34.13; blacks: AOR = 60.9, 95% CI = 42.80–86.63; Hispanics: AOR = 34.7, 95% CI = 23.36–51.62] and schizophrenia [whites: AOR = 2.4, 95% CI = 2.07–2.86; blacks: AOR = 4.2, 95% CI = 2.73–6.37; Hispanics: AOR = 4.1, 95% CI = 2.01–8.22]. Suicide is positively associated with cancer in whites [AOR = 1.8, 95% CI = 1.69–1.93] and blacks [AOR = 1.8, 95% CI = 1.36–2.48], but not with HIV or alcohol and other substance use disorders in any group under review. Conclusion The multivariate analyses indicate high consistency in predicting suicide-associated comorbidities across racial-ethnic groups using MCOD data. However, low prevalence of documented comorbid psychopathology in suicides, and concomitant racial-ethnic discrepancies underscore the need for training in death certification, and routinization and standardization of timely psychological autopsies in all cases of suicide, suspected suicide, and other traumatic deaths of equivocal cause

    Explaining regional variations in health care utilization between Swiss cantons using panel econometric models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of a detailed and nation-wide legislation frame, there exist large cantonal disparities in consumed quantities of health care services in Switzerland. In this study, the most important factors of influence causing these regional disparities are determined. The findings can also be productive for discussing the containment of health care consumption in other countries.</p> <p>Methods</p> <p>Based on the literature, relevant factors that cause geographic disparities of quantities and costs in western health care systems are identified. Using a selected set of these factors, individual panel econometric models are calculated to explain the variation of the utilization in each of the six largest health care service groups (general practitioners, specialist doctors, hospital inpatient, hospital outpatient, medication, and nursing homes) in Swiss mandatory health insurance (MHI). The main data source is 'Datenpool santésuisse', a database of Swiss health insurers.</p> <p>Results</p> <p>For all six health care service groups, significant factors influencing the utilization frequency over time and across cantons are found. A greater supply of service providers tends to have strong interrelations with per capita consumption of MHI services. On the demand side, older populations and higher population densities represent the clearest driving factors.</p> <p>Conclusions</p> <p>Strategies to contain consumption and costs in health care should include several elements. In the federalist Swiss system, the structure of regional health care supply seems to generate significant effects. However, the extent of driving factors on the demand side (e.g., social deprivation) or financing instruments (e.g., high deductibles) should also be considered.</p

    Tetracycline Inducible Gene Manipulation in Serotonergic Neurons

    Get PDF
    The serotonergic (5-HT) neuronal system has important and diverse physiological functions throughout development and adulthood. Its dysregulation during development or later in adulthood has been implicated in many neuropsychiatric disorders. Transgenic animal models designed to study the contribution of serotonergic susceptibility genes to a pathological phenotype should ideally allow to study candidate gene overexpression or gene knockout selectively in serotonergic neurons at any desired time during life. For this purpose, conditional expression systems such as the tet-system are preferable. Here, we generated a transactivator (tTA) mouse line (TPH2-tTA) that allows temporal and spatial control of tetracycline (Ptet) controlled transgene expression as well as gene deletion in 5-HT neurons. The tTA cDNA was inserted into a 196 kb PAC containing a genomic mouse Tph2 fragment (177 kb) by homologous recombination in E. coli. For functional analysis of Ptet-controlled transgene expression, TPH2-tTA mice were crossed to a Ptet-regulated lacZ reporter line (Ptet-nLacZ). In adult double-transgenic TPH2-tTA/Ptet-nLacZ mice, TPH2-tTA founder line L62-20 showed strong serotonergic β-galactosidase expression which could be completely suppressed with doxycycline (Dox). Furthermore, Ptet-regulated gene expression could be reversibly activated or inactivated when Dox was either withdrawn or added to the system. For functional analysis of Ptet-controlled, Cre-mediated gene deletion, TPH2-tTA mice (L62-20) were crossed to double transgenic Ptet-Cre/R26R reporter mice to generate TPH2-tTA/Ptet-Cre/R26R mice. Without Dox, 5-HT specific recombination started at E12.5. With permanent Dox administration, Ptet-controlled Cre-mediated recombination was absent. Dox withdrawal either postnatally or during adulthood induced efficient recombination in serotonergic neurons of all raphe nuclei, respectively. In the enteric nervous system, recombination could not be detected. We generated a transgenic mouse tTA line (TPH2-tTA) which allows both inducible and reversible transgene expression and inducible Cre-mediated gene deletion selectively in 5-HT neurons throughout life. This will allow precise delineation of serotonergic gene functions during development and adulthood

    ARRDC3 suppresses breast cancer progression by negatively regulating integrin β4

    Get PDF
    Large-scale genetic analyses of human tumor samples have been used to identify novel oncogenes, tumor suppressors and prognostic factors, but the functions and molecular interactions of many individual genes have not been determined. In this study we examined the cellular effects and molecular mechanism of the arrestin family member, ARRDC3, a gene preferentially lost in a subset of breast cancers. Oncomine data revealed that the expression of ARRDC3 decreases with tumor grade, metastases and recurrences. ARRDC3 overexpression represses cancer cell proliferation, migration, invasion, growth in soft agar and in vivo tumorigenicity, whereas downregulation of ARRCD3 has the opposite effects. Mechanistic studies showed that ARRDC3 functions in a novel regulatory pathway that controls the cell surface adhesion molecule, β-4 integrin (ITGβ4), a protein associated with aggressive tumor behavior. Our data indicates ARRDC3 directly binds to a phosphorylated form of ITGβ4 leading to its internalization, ubiquitination and ultimate degradation. The results identify the ARRCD3-ITGβ4 pathway as a new therapeutic target in breast cancer and show the importance of connecting genetic arrays with mechanistic studies in the search for new treatments

    Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by Schistosoma mansoni Eggs

    Get PDF
    The flatworm disease, schistosomiasis, is a major public health problem in sub-Saharan Africa, South America and East Asia. A hallmark of infection with Schistosoma mansoni is the immune response to parasite eggs trapped in the liver and other organs. This response involves an infiltration of cells that surround the parasite egg forming a “granuloma.” In mice deprived of T-cells, this granulomatous response is lacking, and toxic products released by eggs quickly cause liver damage and death. Thus the granulomata protect the host from toxic egg products. Only one hepatotoxic molecule, omega-1, has been described to date. We set out to identify other S. mansoni egg hepatotoxins using liver cells grown in culture. We first showed that live eggs, their secretions, and pure omega-1 are toxic. Using a physical separation technique to prepare fractions from whole egg secretions, we identified the presence of IPSE/alpha-1, a protein that is known to strongly influence the immune system. We showed that IPSE/alpha-1 is also hepatotoxic, and that toxicity of both omega-1 and IPSE/alpha-1 can be prevented by first mixing the proteins with specific neutralizing antibodies. Both proteins constitute the majority of hepatotoxicity released by eggs
    corecore