8 research outputs found

    Verbal Memory Impairment in Polydrug Ecstasy Users: A Clinical Perspective

    Get PDF
    BACKGROUND: Ecstasy use has been associated with short-term and long-term memory deficits on a standard Word Learning Task (WLT). The clinical relevance of this has been debated and is currently unknown. The present study aimed at evaluating the clinical relevance of verbal memory impairment in Ecstasy users. To that end, clinical memory impairment was defined as decrement in memory performance that exceeded the cut-off value of 1.5 times the standard deviation of the average score in the healthy control sample. The primary question was whether being an Ecstasy user (E-user) was predictive of having clinically deficient memory performance compared to a healthy control group. METHODS: WLT data were pooled from four experimental MDMA studies that compared memory performance during placebo and MDMA intoxication. Control data were taken from healthy volunteers with no drug use history who completed the WLT as part of a placebo-controlled clinical trial. This resulted in a sample size of 65 E-users and 65 age- and gender-matched healthy drug-naĂŻve controls. All participants were recruited by similar means and were tested at the same testing facilities using identical standard operating procedures. Data were analyzed using linear mixed-effects models, Bayes factor, and logistic regressions. RESULTS: Findings were that verbal memory performance of placebo-treated E-users did not differ from that of controls, and there was substantial evidence in favor of the null hypothesis. History of use was not predictive of memory impairment. During MDMA intoxication of E-users, verbal memory was impaired. CONCLUSION: The combination of the acute and long-term findings demonstrates that, while clinically relevant memory impairment is present during intoxication, it is absent during abstinence. This suggests that use of Ecstasy/MDMA does not lead to clinically deficient memory performance in the long term. Additionally, it has to be investigated whether the current findings apply to more complex cognitive measures in diverse 'user categories' using a combination of genetics, imaging techniques and neuropsychological assessments

    Peripheral endocannabinoid concentrations are not associated with verbal memory impairment during MDMA intoxication

    Get PDF
    BACKGROUND: Preclinical data have suggested involvement of the endocannabinoid (eCB) system in MDMA-induced memory impairment. Clinical research has shown that blockade of the 5-HT2 receptor nulls memory impairment during MDMA intoxication. Interestingly, studies have demonstrated that the eCB and the 5-HT system interact. It was hypothesized that MDMA would cause an increase in eCB concentrations together with a decrease in memory performance, and that combining MDMA with a 5-HT2 receptor blocker ketanserin would lead to a counteraction of the MDMA effects on eCB concentrations and memory. METHODS: Twenty healthy recreational polydrug users entered a double-blind placebo-controlled within-subject study. Participants received a pre-treatment (ketanserin 40 mg, placebo) followed 30 min later by a treatment (MDMA 75 mg, placebo). Verbal memory was tested by means of a 30-word learning test. Endocannabinoid concentrations (anandamide (2-AG); N-arachidonylethanolamine (AEA)) were assessed in blood at baseline, before (90 min post-treatment) and after cognitive tests (150 min post-treatment). RESULTS: Findings showed that MDMA impaired memory 90 min post-treatment in the word learning task. This effect was a replication of previous studies using the same dose of MDMA (75 mg) and the same learning paradigm. Contrary to our hypothesis, MDMA did not affect eCB concentrations, nor did ketanserin block MDMA-induced memory impairment. Ketanserin caused an increase in AEA concentrations, 180 min after administration. CONCLUSION: Current findings suggest that peripherally measured endocannabinoids are not associated with the verbal memory deficit during MDMA intoxication. TRIAL REGISTRATION NUMBER: NTR3691

    The why behind the high: determinants of neurocognition during acute cannabis exposure

    No full text
    Acute cannabis intoxication may induce neurocognitive impairment and is a possible cause of human error, injury and psychological distress. One of the major concerns raised about increasing cannabis legalization and the therapeutic use of cannabis is that it will increase cannabis-related harm. However, the impairing effect of cannabis during intoxication varies among individuals and may not occur in all users. There is evidence that the neurocognitive response to acute cannabis exposure is driven by changes in the activity of the mesocorticolimbic and salience networks, can be exacerbated or mitigated by biological and pharmacological factors, varies with product formulations and frequency of use and can differ between recreational and therapeutic use. It is argued that these determinants of the cannabis-induced neurocognitive state should be taken into account when defining and evaluating levels of cannabis impairment in the legal arena, when prescribing cannabis in therapeutic settings and when informing society about the safe and responsible use of cannabis. Acute cannabis exposure modulates numerous aspects of neurocognitive function; however, the effects experienced by individuals are highly variable. Ramaekers and colleagues here review the neural basis of cannabis-induced neurocognitive changes and response variability, and consider the legal, therapeutic and societal implications

    Plasmodesmata: Channels for Viruses on the Move

    No full text
    The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking
    corecore