85 research outputs found

    Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation

    Get PDF
    http://www.nature.com/ngeo/Rising atmospheric CO2 concentrations can fertilize plant growth. The resulting increased plant uptake of CO2 could, in turn, slow increases in atmospheric CO2 levels and associated climate warming. CO2 fertilization e ects may be enhanced when water availability is low, because elevated CO2 also leads to improved plant water-use e ciency. However, CO2 fertilization e ects may be weaker when plant growth is limited by nutrient availability. How variation in soil nutrients and water may act together to influence CO2 fertilization is unresolved. Here we report plant biomass levels from a five-year, open-air experiment in a perennial grassland under two contrasting levels of atmospheric CO2, soil nitrogen and summer rainfall, respectively. We find that the presence of a CO2 fertilization e ect depends on the amount of available nitrogen and water. Specifically, elevated CO2 levels led to an increase in plant biomass of more than 33% when summer rainfall, nitrogen supply, or both were at the higher levels (ambient for rainfall and elevated for soil nitrogen). But elevated CO2 concentrations did not increase plant biomass when both rainfall and nitrogen were at their lower level. We conclude that given widespread, simultaneous limitation by water and nutrients, large stimulation of biomass by rising atmospheric CO2 concentrations may not be ubiquitous

    Nitrogen limitation constrains sustainability of ecosystem response to CO2

    Full text link
    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world(1-9). Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation(5,7-9), soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62769/1/nature04486.pd

    Phylogenetic Constraints Do Not Explain the Rarity of Nitrogen-Fixing Trees in Late-Successional Temperate Forests

    Get PDF
    Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The 'phylogenetic constraints hypothesis' states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the 'selective constraints hypothesis' states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis.Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the 'potentially N-fixing clade' (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile.These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon

    Using indirect methods to constrain symbiotic nitrogen fixation rates : a case study from an Amazonian rain forest

    Get PDF
    © The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biogeochemistry 99 (2010): 1-13, doi:10.1007/s10533-009-9392-y.Human activities have profoundly altered the global nitrogen (N) cycle. Increases in anthropogenic N have had multiple effects on the atmosphere, on terrestrial, freshwater and marine ecosystems, and even on human health. Unfortunately, methodological limitations challenge our ability to directly measure natural N inputs via biological N fixation (BNF)—the largest natural source of new N to ecosystems. This confounds efforts to quantify the extent of anthropogenic perturbation to the N cycle. To address this gap, we used a pair of indirect methods—analytical modeling and N balance—to generate independent estimates of BNF in a presumed hotspot of N fixation, a tropical rain forest site in central Rondônia in the Brazilian Amazon Basin. Our objectives were to attempt to constrain symbiotic N fixation rates in this site using indirect methods, and to assess strengths and weaknesses of this approach by looking for areas of convergence and disagreement between the estimates. This approach yielded two remarkably similar estimates of N fixation. However, when compared to a previously published bottom-up estimate, our analysis indicated much lower N inputs via symbiotic BNF in the Rondônia site than has been suggested for the tropics as a whole. This discrepancy may reflect errors associated with extrapolating bottom-up fluxes from plot-scale measures, those resulting from the indirect analyses, and/or the relatively low abundance of legumes at the Rondônia site. While indirect methods have some limitations, we suggest that until the technological challenges of directly measuring N fixation are overcome, integrated approaches that employ a combination of model-generated and empirically-derived data offer a promising way of constraining N inputs via BNF in natural ecosystems.We acknowledge and are grateful for financial support from the Andrew W. Mellon Foundation (C.C. and B.H.), the National Science Foundation (NSF DEB-0515744 to C.C. and A.T. and DEB-0315656 to C.N.), and the NASA LBA Program (NCC5-285 to C.N.)

    Nitrate deposition in northern hardwood forests and the nitrogen metabolism of Acer saccharum marsh

    Full text link
    It is generally assumed that plant assimilation constitutes the major sink for anthropogenic Nitrate NO 3 − deposited in temperate forests because plant growth is usually limited by nitrogen (N) availability. Nevertheless, plants are known to vary widely in their capacity for NO 3 − uptake and assimilation, and few studies have directly measured these parameters for overstory trees. Using a combination of field and greenhouse experiments, we studied the N nutrition of Acer saccharum Marsh. in four northern hardwood forests receiving experimental NO 3 − additions equivalent to 30 kg N ha −1 year −1 . We measured leaf and fine-root nitrate reductase activity (NRA) of overstory trees using an in vivo assay and used 15 N to determine the kinetic parameters of NO 3 − uptake by excised fine roots. In two greenhouse experiments, we measured leaf and root NRA in A. saccharum seedlings fertilized with 0–3.5 g NO 3 − −N m −2 and determined the kinetic parameters of NO 3 − and NH 4 + uptake in excised roots of seedlings. In both overstory trees and seedlings, rates of leaf and fine root NRA were substantially lower than previously reported rates for most woody plants and showed no response to NO 3 − fertilization (range = non-detectable to 33 nmol NO 2 − g −1 h −1 ). Maximal rates of NO 3 − uptake in overstory trees also were low, ranging from 0.2 to 1.0 μmol g −1 h −1 . In seedlings, the mean V max for NO 3 − uptake in fine roots (1 μmol g −1 h −1 ) was approximately 30 times lower than the V max for NH 4 + uptake (33 μmol g −1 h −1 ). Our results suggest that A. saccharum satisfies its N demand through rapid NH 4 + uptake and may have a limited capacity to serve as a direct sink for atmospheric additions of NO 3 − .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47695/1/442_2004_Article_BF00334659.pd

    Vegetation Leachate During Arctic Thaw Enhances Soil Microbial Phosphorus

    Get PDF
    Leachate from litter and vegetation penetrates permafrost surface soils during thaw before being exported to aquatic systems. We know this leachate is critical to ecosystem function downstream and hypothesized that thaw leachate inputs would also drive terrestrial microbial activity and nutrient uptake. However, we recognized two potential endpoint scenarios: vegetation leachate is an important source of C for microbes in thawing soil; or vegetation leachate is irrelevant next to the large background C, N, and P pools in thaw soil solution. We assessed these potential outcomes by making vegetation leachate from frozen vegetation and litter in four Arctic ecosystems that have a variety of litter quality and soil C, N, and P contents; one of these ecosystems included a disturbance recovery chronosequence that allowed us to test our second hypothesis that thaw leachate response would be enhanced in disturbed ecosystems. We added water or vegetation leachate to intact, frozen, winter soil cores and incubated the cores through thaw. We measured soil respiration throughout, and soil solution and microbial biomass C, N, and P pools and gross N mineralization immediately after a thaw incubation (−10 to 2°C) lasting 6 days. Vegetation leachate varied strongly by ecosystem in C, N, and P quantity and stoichiometry. Regardless, all vegetated ecosystems responded to leachate additions at thaw with an increase in the microbial biomass phosphate flush and an increase in soil solution carbon and nitrogen, implying a selective microbial uptake of phosphate from plant and litter leachate at thaw. This response to leachate additions was absent in recently disturbed, exposed mineral soil but otherwise did not differ between disturbed and undisturbed ecosystems. The selective uptake of P by microbes implies either thaw microbial P limitation or thaw microbial P uptake opportunism, and that spring thaw is an important time for P retention in several Arctic ecosystems

    Ecosystem Services from Small Forest Patches in Agricultural Landscapes

    Full text link

    Climate change impacts and adaptation in forest management: a review

    Get PDF
    corecore