1,205 research outputs found

    Sensitivity and figures of merit for dark energy supernovae surveys

    Get PDF
    Tracking the origin of the accelerating expansion of the Universe remains one of the most challenging research activities today. The final answer will depend on the precision and on the consistency of future data. The sensitivity of future surveys and the control of the errors are crucial. We focus on futur supernovae surveys in the light of the figure of merit defined by the Dark Energy Task Force. We compare different optimisation and emphasize the importance of the understanding of the systematic error level in this approach and their impact on the conclusions. We discuss different representations of the results to distinguish Λ\LambdaCDM from other theoretical models. We conclude that all representations should be controlled through combined analyses and consistency checks to avoid some bias

    Image Slicer Performances from a Demonstrator for the SNAP/JDEM Mission - Part I: Wavelength Accuracy

    Full text link
    A well-adapted visible and infrared spectrograph has been developed for the SNAP (SuperNova/Acceleration Probe) experiment proposed for JDEM. The instrument should have a high sensitivity to see faint supernovae but also a good redshift determination better than 0.003(1+z) and a precise spectrophotometry (2%). An instrument based on an integral field method with the powerful concept of imager slicing has been designed. A large prototyping effort has been performed in France which validates the concept. In particular a demonstrator reproducing the full optical configuration has been built and tested to prove the optical performances both in the visible and in the near infrared range. This paper is the first of two papers. The present paper focus on the wavelength measurement while the second one will present the spectrophotometric performances. We adress here the spectral accuracy expected both in the visible and in the near infrared range in such configuration and we demonstrate, in particular, that the image slicer enhances the instrumental performances in the spectral measurement precision by removing the slit effect. This work is supported in France by CNRS/INSU/IN2P3 and by the French spatial agency (CNES) and in US by the University of California.Comment: Submitted to PAS

    Prospects for Dark Energy Evolution: a Frequentist Multi-Probe Approach

    Full text link
    A major quest in cosmology is the understanding of the nature of dark energy. It is now well known that a combination of cosmological probes is required to break the underlying degeneracies on cosmological parameters. In this paper, we present a method, based on a frequentist approach, to combine probes without any prior constraints, taking full account of the correlations in the parameters. As an application, a combination of current SNIa and CMB data with an evolving dark energy component is first compared to other analyses. We emphasise the consequences of the implementation of the dark energy perturbations on the result for a time varying equation of state. The impact of future weak lensing surveys on the measurement of dark energy evolution is then studied in combination with future measurements of the cosmic microwave background and type Ia supernovae. We present the combined results for future mid-term and long-term surveys and confirm that the combination with weak lensing is very powerful in breaking parameter degeneracies. A second generation of experiment is however required to achieve a 0.1 error on the parameters describing the evolution of dark energy.Comment: Submitted to Astronomy & Astrophysics 14 pages, 8 figure

    Modelling the relative velocities of isolated pairs of galaxies

    Full text link
    We study the comoving relative velocities, v12, of model isolated galaxy pairs at z=0.5. For this purpose, we use the predictions from the GALFORM semi-analytical model of galaxy formation and evolution based on a Lambda cold dark matter cosmology consistent with the results from WMAP7. In real space, we find that isolated pairs of galaxies are predicted to form an angle t with the line-of-sight that is uniformily distributed as expected if the Universe is homogeneous and isotropic. We also find that isolated pairs of galaxies separated by a comoving distance between 1 and 3 Mpc/h are predicted to have =0. For galaxies in this regime, the distribution of the angle t is predicted to change minimally from real to redshift space, with a change smaller than 5% in . However, the distances defining the comoving regime strongly depends on the applied isolation criteria.Comment: 4 pages, 4 figures, SF2A 2013 Proceedin

    Jackknife resampling technique on mocks: an alternative method for covariance matrix estimation

    Full text link
    We present a fast and robust alternative method to compute covariance matrix in case of cosmology studies. Our method is based on the jackknife resampling applied on simulation mock catalogues. Using a set of 600 BOSS DR11 mock catalogues as a reference, we find that the jackknife technique gives a similar galaxy clustering covariance matrix estimate by requiring a smaller number of mocks. A comparison of convergence rates show that \sim7 times fewer simulations are needed to get a similar accuracy on variance. We expect this technique to be applied in any analysis where the number of available N-body simulations is low.Comment: 11 pages, 11 figures, 2 table

    On the determination of the deceleration parameter from Supernovae data

    Full text link
    Supernovae searches have shown that a simple matter-dominated and decelerating universe should be ruled out. However a determination of the present deceleration parameter q0q_0 through a simple kinematical description is not exempt of possible drawbacks. We show that, with a time dependent equation of state for the dark energy, a bias is present for q0q_0 : models which are very far from the so-called Concordance Model can be accommodated by the data and a simple kinematical analysis can lead to wrong conclusions. We present a quantitative treatment of this bias and we present our conclusions when a possible dynamical dark energy is taken into account.Comment: 4 pages, 3 figures, submitte

    Stochastic bias of colour-selected BAO tracers by joint clustering-weak lensing analysis

    Full text link
    The baryon acoustic oscillation (BAO) feature in the two-point correlation function of galaxies supplies a standard ruler to probe the expansion history of the Universe. We study here several galaxy selection schemes, aiming at building an emission-line galaxy (ELG) sample in the redshift range 0.6<z<1.70.6<z<1.7, that would be suitable for future BAO studies, providing a highly biased galaxy sample. We analyse the angular galaxy clustering of galaxy selections at the redshifts 0.5, 0.7, 0.8, 1 and 1.2 and we combine this analysis with a halo occupation distribution (HOD) model to derive the properties of the haloes these galaxies inhabit, in particular the galaxy bias on large scales. We also perform a weak lensing analysis (aperture statistics) to extract the galaxy bias and the cross-correlation coefficient and compare to the HOD prediction. We apply this analysis on a data set composed of the photometry of the deep co-addition on Sloan Digital Sky Survey (SDSS) Stripe 82 (225 deg2^2), of Canda-France-Hawai Telescope/Stripe 82 deep \emph{i}-band weak lensing survey and of the {\it Wide-Field Infrared Survey Explorer}infrared photometric band W1. The analysis on the SDSS-III/constant mass galaxies selection at z=0.5z=0.5 is in agreement with previous studies on the tracer, moreover we measure its cross-correlation coefficient r=1.16±0.35r=1.16\pm0.35. For the higher redshift bins, we confirm the trends that the brightest galaxy populations selected are strongly biased (b>1.5b>1.5), but we are limited by current data sets depth to derive precise values of the galaxy bias. A survey using such tracers of the mass field will guarantee a high significance detection of the BAO.Comment: 17 pages, 15 figures, submitted to MNRA

    The Minimal Supersymmetric Standard Model: Group Summary Report

    Get PDF
    CONTENTS: 1. Synopsis, 2. The MSSM Spectrum, 3. The Physical Parameters, 4. Higgs Boson Production and Decays, 5. SUSY Particle Production and Decays, 6. Experimental Bounds on SUSY Particle Masses, 7. References.Comment: 121 pages, latex + epsfig, graphicx, axodraw, Report of the MSSM working group for the Workshop "GDR-Supersym\'etrie",France. Rep. PM/98-4
    corecore