5 research outputs found

    SHIELD: Neutral Gas Kinematics and Dynamics

    Get PDF
    We present kinematic analyses of the 12 galaxies in the "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD). We use multi-configuration interferometric observations of the HI 21cm emission line from the Karl G. Jansky Very Large Array (VLA) to produce image cubes at a variety of spatial and spectral resolutions. Both two- and three-dimensional fitting techniques are employed in an attempt to derive inclination-corrected rotation curves for each galaxy. In most cases, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make spatially resolved position-velocity cuts, corrected for inclination using the stellar components, to estimate the circular rotation velocities. We find circular velocities <30 km/s for the entire survey population. Baryonic masses are calculated using single-dish HI fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are then placed on the baryonic Tully-Fisher relation. There exists an empirical threshold rotational velocity <15 km/s, below which current observations cannot differentiate coherent rotation from pressure support. The SHIELD galaxies are representative of an important population of galaxies whose properties cannot be described by current models of rotationally-dominated galaxy dynamics

    SHIELD: Comparing Gas and Star Formation in Low Mass Galaxies

    Get PDF
    We analyze the relationships between atomic, neutral hydrogen (HI) and star formation (SF) in the 12 low-mass SHIELD galaxies. We compare high spectral (~0.82 km/s/channel) and spatial resolution (physical resolutions of 170 pc - 700 pc) HI imaging from the VLA with H\alpha and far-ultraviolet imaging. We quantify the degree of co-spatiality between star forming regions and regions of high HI column densities. We calculate the global star formation efficiencies (SFE, ΣSFR\Sigma_{\rm SFR} / ΣHI\Sigma_{\rm HI}), and examine the relationships among the SFE and HI mass, HI column density, and star formation rate (SFR). The systems are consuming their cold neutral gas on timescales of order a few Gyr. While we derive an index for the Kennicutt-Schmidt relation of N ~ 0.68 ±\pm 0.04 for the SHIELD sample as a whole, the values of N vary considerably from system to system. By supplementing SHIELD results with those from other surveys, we find that HI mass and UV-based SFR are strongly correlated over five orders of magnitude. Identification of patterns within the SHIELD sample allows us to bin the galaxies into three general categories: 1) mainly co-spatial HI and SF regions, found in systems with highest peak HI column densities and highest total HI masses, 2) moderately correlated HI and SF regions, found in systems with moderate HI column densities, and 3) obvious offsets between HI and SF peaks, found in systems with the lowest total HI masses. SF in these galaxies is dominated by stochasticity and random fluctuations in their ISM

    Bioelectrical signals and ion channels in the modeling of multicellular patterns and cancer biophysics

    Get PDF
    Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level

    Lymphomas of the Gut

    No full text
    corecore