76 research outputs found

    Neoadjuvant chemotherapy in the setting of locally advanced olfactory neuroblastoma with intracranial extension

    Get PDF
    Olfactory neuroblastoma (esthesioneuroblastoma) is a rare malignant tumor of neuroectodermal origin. With only about 1,000 cases reported, there are no clear guidelines regarding management of this disease. Intracranial extension and orbital involvement have been shown to be independent risk factors associated with poorer outcomes. We hereby report a case of a 46-year old male presented with an 8-month history of progressive nasal obstruction and intermittent right-sided epistaxis associated with anosmia and increased pressure sensation in and around the right eye. Further evaluation revealed a large enhancing heterogeneous cystic and solid mass in the right nasal cavity measuring 5.0×5.3×4.6 cm with extension superiorly into the anterior cranial fossa and frontal lobes, ethmoid and sphenoid sinuses. A biopsy of this mass confirmed high grade olfactory neuroblastoma. Because of the intra-cranial extension, a decision was made to start neoadjuvant chemotherapy with cisplatin and etoposide. The patient had very good response to this treatment on a repeat imaging study and went on to have resection of this mass. Post-operatively, he received radiation therapy to the tumor bed and 2 more cycles of chemotherapy. He has been followed now for more than 8 months with no evidence of disease recurrence

    A Dynamical Systems Model for Combinatorial Cancer Therapy Enhances Oncolytic Adenovirus Efficacy by MEK-Inhibition

    Get PDF
    Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions, are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to dramatically improve non-surgical cancer treatment, especially in locally advanced or metastatic cases where treatment options remain limited.National Institutes of Health (U.S.) (Grant R01 CA118545)National Institutes of Health (U.S.) (Grant R01 CA095701)National Institutes of Health (U.S.) (Grant U54 CA11297)National Institutes of Health (U.S.) (Grant U54-CA112967

    Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death

    Get PDF
    This work was supported by Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Ministerio de Economía y Competitividad (CTQ2013-44367-C2-2-P to R.H.-G.) and Diputación General de Aragón (DGA; B89 to R.H.-G.) and the EU Seventh Framework Programme (2007–2013) under BioStruct-X (grant agreement 283570 and BIOSTRUCTX 5186, to R.H.-G.). T.K.S. was supported by the Wellcome Trust grant 093228 and European Community’s Seventh Framework Programme under grant agreement No. 602773 (Project KINDRED).Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite’s growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase.Publisher PDFPeer reviewe

    Changing trends in mastitis

    Get PDF
    <p>Abstract</p> <p>The global dairy industry, the predominant pathogens causing mastitis, our understanding of mastitis pathogens and the host response to intramammary infection are changing rapidly. This paper aims to discuss changes in each of these aspects. Globalisation, energy demands, human population growth and climate change all affect the dairy industry. In many western countries, control programs for contagious mastitis have been in place for decades, resulting in a decrease in occurrence of <it>Streptococcus agalactiae </it>and <it>Staphylococcus aureus </it>mastitis and an increase in the relative impact of <it>Streptococcus uberis </it>and <it>Escherichia coli </it>mastitis. In some countries, <it>Klebsiella </it>spp. or <it>Streptococcus dysgalactiae </it>are appearing as important causes of mastitis. Differences between countries in legislation, veterinary and laboratory services and farmers' management practices affect the distribution and impact of mastitis pathogens. For pathogens that have traditionally been categorised as contagious, strain adaptation to human and bovine hosts has been recognised. For pathogens that are often categorised as environmental, strains causing transient and chronic infections are distinguished. The genetic basis underlying host adaptation and mechanisms of infection is being unravelled. Genomic information on pathogens and their hosts and improved knowledge of the host's innate and acquired immune responses to intramammary infections provide opportunities to expand our understanding of bovine mastitis. These developments will undoubtedly contribute to novel approaches to mastitis diagnostics and control.</p
    • …
    corecore