317 research outputs found

    Artificial Modulation of the Gating Behavior of a K+ Channel in a KvAP-DNA Chimera

    Get PDF
    We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel

    Expression and Membrane Topology of Anopheles gambiae Odorant Receptors in Lepidopteran Insect Cells

    Get PDF
    A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel ‘topology screen’ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties

    Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant

    Get PDF
    Purpose: To evaluate the long-term effects of implantation of a biodegradable polymer meniscus implant on articular cartilage degeneration and compare this to articular cartilage degeneration after meniscectomy. Methods: Porous polymer polycaprolacton-based polyurethane meniscus implants were implanted for 6 or 24 months in the lateral compartment of Beagle dog knees. Contralateral knees were meniscectomized, or left intact and served as controls. Articular cartilage degeneration was evaluated in detail using India ink staining, routine histology, immunochemistry for denatured (Col2-¾M) and cleaved (Col2-¾Cshort) type II collagen, Mankin’s grading system, and cartilage thickness measurements. Results: Histologically, fibrillation and substantial immunohistochemical staining for both denatured and cleaved type II collagen were found in all three treatment groups. The cartilage of the three groups showed identical degradation patterns. In the 24 months implant group, degradation appeared to be more severe when compared to the 6 months implant group and meniscectomy group. Significantly more cartilage damage (India ink staining, Mankin’s grading system, and cartilage thickness measurements) was found in the 24 months implant group compared to the 6 months implant group and meniscectomy group. Conclusion: Degradation of the cartilage matrix was the result of both mechanical overloading as well as localized cell-mediated degradation. The degeneration patterns were highly variable between animals. Clinical application of a porous polymer implant for total meniscus replacement is not supported by this study.

    Pleural Tuberculosis in Patients with Early HIV Infection Is Associated with Increased TNF-Alpha Expression and Necrosis in Granulomas

    Get PDF
    Although granulomas may be an essential host response against persistent antigens, they are also associated with immunopathology. We investigated whether HIV co-infection affects histopathological appearance and cytokine profiles of pleural granulomas in patients with active pleural tuberculosis (TB). Granulomas were investigated in pleural biopsies from HIV positive and negative TB pleuritis patients. Granulomas were characterised as necrotic or non-necrotic, graded histologically and investigated for the mRNA expression of IL-12, IFN-γ, TNF-α and IL-4 by in situ hybridisation. In all TB patients a mixed Th1/Th2 profile was noted. Necrotic granulomas were more evident in HIV positive patients with a clear association between TNF-α and necrosis. This study demonstrates immune dysregulation which may include TNF-α-mediated immunopathology at the site of disease in HIV infected pleural TB patients

    When Subterranean Termites Challenge the Rules of Fungal Epizootics

    Get PDF
    Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle

    Prostaglandin D2-supplemented “functional eicosanoid testing and typing” assay with peripheral blood leukocytes as a new tool in the diagnosis of systemic mast cell activation disease: an explorative diagnostic study

    Get PDF
    Background: Systemic mast cell activation disease (MCAD) is characterized by an enhanced release of mast cell-derived mediators, including eicosanoids, which induce a broad spectrum of clinical symptoms. Accordingly, the diagnostic algorithm of MCAD presupposes the proof of increased mast cell mediator release, but only a few mediators are currently established as routine laboratory parameters. We thus initiated an explorative study to evaluate in vitro typing of individual eicosanoid pattern of peripheral blood leukocytes (PBLs) as a new diagnostic tool in MCAD. Methods: Using the “functional eicosanoid testing and typing” (FET) assay, we investigated the balance (i.e. the complex pattern of formation, release and mutual interaction) of prostaglandin E2 (PGE2) and peptido-leukotrienes (pLT) release from PBLs of 22 MCAD patients and 20 healthy individuals. FET algorithms thereby consider both basal and arachidonic acid (AA)-, acetylsalicylic acid (ASA)-, and substance P (SP)-triggered release of PGE2 and pLT. The FET assay was further supplemented by analyzing prostaglandin D2 (PGD2), as mast cell-specific eicosanoid. Results: We observed marked PGE2-pLT imbalances for PBLs of MCAD patients, as indicated by a markedly enhanced mean FET value of 1.75 ± 0.356 (range: 1.14–2.36), compared to 0.53 ± 0.119 (range: 0.36-0.75) for healthy individuals. In addition, mean PGD2 release from PBLs of MCAD patients was significantly, 6.6-fold higher than from PBLs of healthy individuals (946 ± 302.2 pg/ml versus 142 ± 47.8 pg/ml; P < 0.001). In contrast to healthy individuals, PGD2 release from PBLs of MCAD patients was markedly triggered by SP (mean: 1896 ± 389.7 pg/ml; P < 0.001), whereas AA and ASA caused individually varying effects on both PGD2 and pLT release. Conclusions: The new in-vitro FET assay, supplemented with analysis of PGD2, demonstrated that the individual patterns of eicosanoid release from PBLs can unambiguously distinguish MCAD patients from healthy individuals. Notably, in our analyses, the FET value and both basal and triggered PGD2 levels were not significantly affected by MCAD-specific medication. Thus, this approach may serve as an in-vitro diagnostic tool to estimate mast cell activity and to support individualized therapeutic decision processes for patients suffering from MCAD

    Structure-Based Predictive Models for Allosteric Hot Spots

    Get PDF
    In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a widely used machine-learning method. The training data set consisted of residues classified as either hotspots or non-hotspots based on experimental characterization of point mutations from a diverse set of allosteric proteins. Each residue had an associated set of calculated features. Two sets of features were used, one consisting of dynamical, structural, network, and informatic measures, and another of structural measures defined by Daily and Gray [1]. The resulting models performed well on an independent data set consisting of hotspots and non-hotspots from five allosteric proteins. For the independent data set, our top 10 models using Feature Set 1 recalled 68–81% of known hotspots, and among total hotspot predictions, 58–67% were actual hotspots. Hence, these models have precision P = 58–67% and recall R = 68–81%. The corresponding models for Feature Set 2 had P = 55–59% and R = 81–92%. We combined the features from each set that produced models with optimal predictive performance. The top 10 models using this hybrid feature set had R = 73–81% and P = 64–71%, the best overall performance of any of the sets of models. Our methods identified hotspots in structural regions of known allosteric significance. Moreover, our predicted hotspots form a network of contiguous residues in the interior of the structures, in agreement with previous work. In conclusion, we have developed models that discriminate between known allosteric hotspots and non-hotspots with high accuracy and sensitivity. Moreover, the pattern of predicted hotspots corresponds to known functional motifs implicated in allostery, and is consistent with previous work describing sparse networks of allosterically important residues
    corecore