166 research outputs found

    Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis

    Get PDF
    Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival.Peer reviewe

    Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis

    Get PDF
    Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival

    Emergence of contact injuries in invasion team sports : an ecological dynamics rationale

    Get PDF
    The incidence of contact injuries in team sports is considerable, and injury mechanisms need to be comprehensively understood to facilitate the adoption of preventive measures. In Association Football, evidence shows that the highest prevalence of contact injuries emerges in one-on-one interactions. However, previous studies have tended to operationally report injury mechanisms in isolation, failing to provide a theoretical rationale to explain how injuries might emerge from interactions between opposing players. In this position paper, we propose an ecological dynamics framework to enhance current understanding of behavioural processes leading to contact injuries in team sports. Based on previous research highlighting the dynamics of performer–environment interactions, contact injuries are proposed to emerge from symmetry-breaking processes during on-field interpersonal interactions among competing players and the ball. Central to this approach is consideration of candidate control parameters that may provide insights on the information sources used by players to reduce risk of contact injuries during performance. Clinically, an ecological dynamics analysis could allow sport practitioners to design training sessions based on selected parameter threshold values as primary and/or secondary preventing measures during training and rehabilitation sessions

    Influential factors on the levels of cation exchange capacity in sediment at Langat river.

    Get PDF
    An exploratory study was carried out at 22 sampling stations along the Langat River, Selangor in order to investigate on the vitality of cation exchange capacity (CEC) in sediment (0–5 cm). Parameters such as pH, Eh, salinity, and electrical conductivity (EC) were determined. The CEC in sediment has been calculated by the determination of Ca2+, Na+, Mg2+, and K+ using the flame atomic absorption spectrophotometer, while the organic matter content in sediment was ascertained using the loss on ignition method. The characteristic of the sediment shows that pH (3.09–7.46), salinity (0.02–10.71 ppt), EC (3.39–517 μS/cm) and Eh (−16.20–253.10 mV) were substantially high in variation. This study also revealed that exchangeable Ca2+ and Mg2+ were controlled by organic matter contents, while exchangeable Na+ and K+ were influenced by salinity. Salinity was observed to play a major part in controlling all the exchangeable cations, as it gives strong significant correlations with Na+, K+, Mg2+, CEC, and organic matter at p < 0.01. The presence of seawater, clay mineralogy, and organic matter proves that it does play an important role in determining the CEC and soon relates to the pollution magnitude in the sediment

    Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: an ecological approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated concentrations of mercury have been documented in fish in Lake Chapala in central Mexico, an area that is home to a large subsistence fishing community. However, neither the extent of human mercury exposure nor its sources and routes have been elucidated.</p> <p>Methods</p> <p>Total mercury concentrations were measured in samples of fish from Lake Chapala; in sections of sediment cores from the delta of Rio Lerma, the major tributary to the lake; and in a series of suspended-particle samples collected at sites from the mouth of the Lerma to mid-Lake. A cross-sectional survey of 92 women ranging in age from 18-45 years was conducted in three communities along the Lake to investigate the relationship between fish consumption and hair mercury concentrations among women of child-bearing age.</p> <p>Results</p> <p>Highest concentrations of mercury in fish samples were found in carp (mean 0.87 ppm). Sediment data suggest a pattern of moderate ongoing contamination. Analyses of particles filtered from the water column showed highest concentrations of mercury near the mouth of the Lerma. In the human study, 27.2% of women had >1 ppm hair mercury. On multivariable analysis, carp consumption and consumption of fish purchased or captured from Lake Chapala were both associated with significantly higher mean hair mercury concentrations.</p> <p>Conclusions</p> <p>Our preliminary data indicate that, despite a moderate level of contamination in recent sediments and suspended particulate matter, carp in Lake Chapala contain mercury concentrations of concern for local fish consumers. Consumption of carp appears to contribute significantly to body burden in this population. Further studies of the consequences of prenatal exposure for child neurodevelopment are being initiated.</p

    Ontogeny of juvenile freshwater pearl mussels, Margaritifera margaritifera (Bivalvia: Margaritiferidae).

    Get PDF
    The gills of juvenile freshwater bivalves undergo a complex morphogenesis that may correlate with changes in feeding ecology, but ontogenic studies on juvenile mussels are rare. Scanning electron microscopy was used to examine the ultrastructure and ontogeny of 117 juvenile freshwater pearl mussels (Margaritifera margaritifera) ranging in age from 1–44 months and length from 0.49–8.90 mm. Three stages of gill development are described. In Stage 1 (5–9 inner demibranch filaments), only unreflected inner demibranch filaments were present. In Stage 2 (9–17 inner demibranch filaments), inner demibranch filaments began to reflect when shell length exceeded 1.13 mm, at 13–16 months old. Reflection began in medial filaments and then proceeded anterior and posterior. In Stage 3 (28–94 inner demibranch filaments), outer demibranch filaments began developing at shell length > 3.1 mm and about 34 months of age. The oral groove on the inner demibranch was first observed in 34 month old specimens > 2.66 mm but was never observed on the outer demibranch. Shell length (R2 = 0.99) was a better predictor of developmental stage compared to age (R2 = 0.84). The full suite of gill ciliation was present on filaments in all stages. Interfilamentary distance averaged 31.3 μm and did not change with age (4–44 months) or with size (0.75–8.9 mm). Distance between laterofrontal cirri couplets averaged 1.54 μm and did not change significantly with size or age. Labial palp primordia were present in even the youngest individuals but ciliature became more diverse in more developed individuals. Information presented here is valuable to captive rearing programmes as it provides insight in to when juveniles may be particularly vulnerable to stressors due to specific ontogenic changes. The data are compared with two other recent studies of Margaritifera development.N/
    corecore