175 research outputs found

    Insect Brains Use Image Interpolation Mechanisms to Recognise Rotated Objects

    Get PDF
    Recognising complex three-dimensional objects presents significant challenges to visual systems when these objects are rotated in depth. The image processing requirements for reliable individual recognition under these circumstances are computationally intensive since local features and their spatial relationships may significantly change as an object is rotated in the horizontal plane. Visual experience is known to be important in primate brains learning to recognise rotated objects, but currently it is unknown how animals with comparatively simple brains deal with the problem of reliably recognising objects when seen from different viewpoints. We show that the miniature brain of honeybees initially demonstrate a low tolerance for novel views of complex shapes (e.g. human faces), but can learn to recognise novel views of stimuli by interpolating between or ‘averaging’ views they have experienced. The finding that visual experience is also important for bees has important implications for understanding how three dimensional biologically relevant objects like flowers are recognised in complex environments, and for how machine vision might be taught to solve related visual problems

    Emergent complex neural dynamics

    Full text link
    A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain

    Illusions of Visual Motion Elicited by Electrical Stimulation of Human MT Complex

    Get PDF
    Human cortical area MT+ (hMT+) is known to respond to visual motion stimuli, but its causal role in the conscious experience of motion remains largely unexplored. Studies in non-human primates demonstrate that altering activity in area MT can influence motion perception judgments, but animal studies are inherently limited in assessing subjective conscious experience. In the current study, we use functional magnetic resonance imaging (fMRI), intracranial electrocorticography (ECoG), and electrical brain stimulation (EBS) in three patients implanted with intracranial electrodes to address the role of area hMT+ in conscious visual motion perception. We show that in conscious human subjects, reproducible illusory motion can be elicited by electrical stimulation of hMT+. These visual motion percepts only occurred when the site of stimulation overlapped directly with the region of the brain that had increased fMRI and electrophysiological activity during moving compared to static visual stimuli in the same individual subjects. Electrical stimulation in neighboring regions failed to produce illusory motion. Our study provides evidence for the sufficient causal link between the hMT+ network and the human conscious experience of visual motion. It also suggests a clear spatial relationship between fMRI signal and ECoG activity in the human brain

    Selective Phosphorylation Modulates the PIP2 Sensitivity of the CaM-SK Channel Complex

    Get PDF
    Phosphatidylinositol bisphosphate (PIP2) regulates the activities of many membrane proteins including ion channels through direct interactions. However, the affinity of PIP2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP2 is an important cofactor for activation of small conductance Ca2+-activated potassium channels (SK) by Ca2+-bound calmodulin (CaM). Removal of the endogenous PIP2 inhibits SK channels. The PIP2-binding site resides at the interface of CaM and the SK C-terminus. We further demonstrate that the affinity of PIP2 for its target proteins can be regulated by cellular signaling. Phosphorylation of CaM T79, located adjacent to the PIP2-binding site, by Casein Kinase 2 reduces the affinity of PIP2 for the CaM-SK channel complex by altering the dynamic interactions among amino acid residues surrounding the PIP2-binding site. This effect of CaM phosphorylation promotes greater channel inhibition by G-protein-mediated hydrolysis of PIP2

    Perceptual expertise improves category detection in natural scenes

    Get PDF
    There is much debate about how detection, categorization, and within-category identification relate to one another during object recognition. Whether these tasks rely on partially shared perceptual mechanisms may be determined by testing whether training on one of these tasks facilitates performance on another. In the present study we asked whether expertise in discriminating objects improves the detection of these objects in naturalistic scenes. Self-proclaimed car experts (N = 34) performed a car discrimination task to establish their level of expertise, followed by a visual search task where they were asked to detect cars and people in hundreds of photographs of natural scenes. Results revealed that expertise in discriminating cars was strongly correlated with car detection accuracy. This effect was specific to objects of expertise, as there was no influence of car expertise on person detection. These results indicate a close link between object discrimination and object detection performance, which we interpret as reflecting partially shared perceptual mechanisms and neural representations underlying these tasks: the increased sensitivity of the visual system for objects of expertise – as a result of extensive discrimination training – may benefit both the discrimination and the detection of these objects. Alternative interpretations are also discussed

    Connectivity of Default-Mode Network Is Associated with Cerebral Edema in Hepatic Encephalopathy

    Get PDF
    Cerebral edema, a well-known feature of acute liver disease, can occur in cirrhotic patients regardless of hepatic encephalopathy (HE) and adversely affect prognosis. This study characterized and correlated functional HE abnormalities in the brain to cerebral edema using resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI). Forty-one cirrhotic patients (16 without HE, 14 minimal HE, 11 overt HE) and 32 healthy controls were assessed. The HE grade in cirrhotic patients was evaluated by the West Haven criteria and neuro-psychological examinations. Functional connectivity correlation coefficient (fc-CC) of the default mode network (DMN) was determined by rs-fMRI, while the corresponding mean diffusivity (MD) was obtained from DTI. Correlations among inter-cortical fc-CC, DTI indices, Cognitive Ability Screening Instrument scores, and laboratory tests were also analyzed. Results showed that gradual reductions of HE-related consciousness levels, from “without HE” or “minimal HE” to “overt HE”, correlated with decreased anterior-posterior fc-CC in DMN [F(4.415), p = 0.000)]. The MD values from regions with anterior-posterior fc-CC differences in DMN revealed significant differences between the overt HE group and other groups. Increased MD in this network was inversely associated with decreased fc-CC in DMN and linearly correlated with poor cognitive performance. In conclusion, cerebral edema can be linked to altered cerebral temporal architecture that modifies both within- and between-network connectivity in HE. Reduced fc-CC in DMN is associated with behavior and consciousness deterioration. Through appropriate targets, rs-fMRI technology may provide relevant supplemental information for monitoring HE and serve as a new biomarker for clinical diagnosis

    Evidence for Thalamic Involvement in the Thermal Grill Illusion: An fMRI Study

    Get PDF
    Perceptual illusions play an important role in untangling neural mechanisms underlying conscious phenomena. The thermal grill illusion (TGI) has been suggested as a promising model for exploring percepts involved in neuropathic pain, such as cold-allodynia (pain arising from contact with innocuous cold). The TGI is an unpleasant/painful sensation from touching juxtapositioned bars of cold and warm innocuous temperatures.To develop an MRI-compatible TGI-unit and explore the supraspinal correlates of the illusion, using fMRI, in a group of healthy volunteers.We constructed a TGI-thermode allowing the rapid presentation of warm(41°C), cold(18°C) and interleaved(41°C+18°C = TGI) temperatures in an fMRI-environment. Twenty volunteers were tested. The affective-motivational (“unpleasantness”) and sensory-disciminatory (“pain-intensity”) dimensions of each respective stimulus were rated. Functional images were analyzed at a corrected α-level <0.05.The TGI was rated as significantly more unpleasant and painful than stimulation with each of its constituent temperatures. Also, the TGI was rated as significantly more unpleasant than painful. Thermal stimulation versus neutral baseline revealed bilateral activations of the anterior insulae and fronto-parietal regions. Unlike its constituent temperatures the TGI displayed a strong activation of the right (contralateral) thalamus. Exploratory contrasts at a slightly more liberal threshold-level also revealed a TGI-activation of the right mid/anterior insula, correlating with ratings of unpleasantness(rho = 0.31).To the best of our knowledge, this is the first fMRI-study of the TGI. The activation of the anterior insula is consistent with this region's putative role in processing of homeostatically relevant feeling-states. Our results constitute the first neurophysiologic evidence of thalamic involvement in the TGI. Similar thalamic activity has previously been observed during evoked cold-allodynia in patients with central neuropathic pain. Our results further the understanding of the supraspinal correlates of the TGI-phenomenon and pave the way for future inquiries into if and how it may relate to neuropathic pain

    Changing Human Visual Field Organization from Early Visual to Extra-Occipital Cortex

    Get PDF
    BACKGROUND: The early visual areas have a clear topographic organization, such that adjacent parts of the cortical surface represent distinct yet adjacent parts of the contralateral visual field. We examined whether cortical regions outside occipital cortex show a similar organization. METHODOLOGY/PRINCIPAL FINDINGS: The BOLD responses to discrete visual field locations that varied in both polar angle and eccentricity were measured using two different tasks. As described previously, numerous occipital regions are both selective for the contralateral visual field and show topographic organization within that field. Extra-occipital regions are also selective for the contralateral visual field, but possess little (or no) topographic organization. A regional analysis demonstrates that this weak topography is not due to increased receptive field size in extra-occipital areas. CONCLUSIONS/SIGNIFICANCE: A number of extra-occipital areas are identified that are sensitive to visual field location. Neurons in these areas corresponding to different locations in the contralateral visual field do not demonstrate any regular or robust topographic organization, but appear instead to be intermixed on the cortical surface. This suggests a shift from processing that is predominately local in visual space, in occipital areas, to global, in extra-occipital areas. Global processing fits with a role for these extra-occipital areas in selecting a spatial locus for attention and/or eye-movements

    Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study

    Get PDF
    Background: The impact of long term residence on high altitude (HA) on human brain has raised concern among researchers in recent years. This study investigated the cerebrovascular reactivity among native-born high altitude (HA) residents as compared to native sea level (SL) residents. The two groups were matched on the ancestral line, ages, gender ratios, and education levels. A visual cue guided maximum inspiration task with brief breath holding was performed by all the subjects while Blood-Oxygenation-Level-Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) data were acquired from them
    corecore