54 research outputs found

    Survival Impact of Primary Tumor Resection in De Novo Metastatic Breast Cancer Patients (GEICAM/El Alamo Registry)

    Get PDF
    The debate about surgical resection of primary tumor (PT) in de novo metastatic breast cancer (MBC) patients persists. We explored this approach's outcomes in patients included in a retrospective registry, named El Álamo, of breast cancer patients diagnosed in Spain (1990-2001). In this analysis we only included de novo MBC patients, 1415 of whom met the study's criteria. Descriptive, Kaplan-Meier and Cox regression analyses were carried out. Median age was 63.1 years, 49.2% of patients had single-organ metastasis (skin/soft tissue [16.3%], bone [33.8%], or viscera [48.3%]). PT surgery (S) was performed in 44.5% of the cases. S-group patients were younger, had smaller tumors, higher prevalence of bone and oligometastatic disease, and lower prevalence of visceral involvement. With a median follow-up of 23.3 months, overall survival (OS) was 39.6 versus 22.4 months (HR = 0.59, p < 0.0001) in the S- and non-S groups, respectively. The S-group OS benefit remained statistically and clinically significant regardless of metastatic location, histological type, histological grade, hormone receptor status and tumor size. PT surgery (versus no surgery) was associated with an OS benefit suggesting that loco-regional PT control may be considered in selected MBC patients. Data from randomized controlled trials are of utmost importance to confirm these results

    On systems and control approaches to therapeutic gain

    Get PDF
    BACKGROUND: Mathematical models of cancer relevant processes are being developed at an increasing rate. Conceptual frameworks are needed to support new treatment designs based on such models. METHODS: A modern control perspective is used to formulate two therapeutic gain strategies. RESULTS: Two conceptually distinct therapeutic gain strategies are provided. The first is direct in that its goal is to kill cancer cells more so than normal cells, the second is indirect in that its goal is to achieve implicit therapeutic gains by transferring states of cancer cells of non-curable cases to a target state defined by the cancer cells of curable cases. The direct strategy requires models that connect anti-cancer agents to an endpoint that is modulated by the cause of the cancer and that correlates with cell death. It is an abstraction of a strategy for treating mismatch repair (MMR) deficient cancers with iodinated uridine (IUdR); IU-DNA correlates with radiation induced cell killing and MMR modulates the relationship between IUdR and IU-DNA because loss of MMR decreases the removal of IU from the DNA. The second strategy is indirect. It assumes that non-curable patient outcomes will improve if the states of their malignant cells are first transferred toward a state that is similar to that of a curable patient. This strategy is difficult to employ because it requires a model that relates drugs to determinants of differences in patient survival times. It is an abstraction of a strategy for treating BCR-ABL pro-B cell childhood leukemia patients using curable cases as the guides. CONCLUSION: Cancer therapeutic gain problem formulations define the purpose, and thus the scope, of cancer process modeling. Their abstractions facilitate considerations of alternative treatment strategies and support syntheses of learning experiences across different cancers

    Toxicity Testing in the 21st Century: Defining New Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways

    Get PDF
    The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC) report Toxicity Testing in the 21st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a) “toxicity pathways” (the innate cellular pathways that may be perturbed by chemicals) and (b) the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU). EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair

    Distinct Patterns of DNA Damage Response and Apoptosis Correlate with Jak/Stat and PI3Kinase Response Profiles in Human Acute Myelogenous Leukemia

    Get PDF
    BACKGROUND:Single cell network profiling (SCNP) utilizing flow cytometry measures alterations in intracellular signaling responses. Here SCNP was used to characterize Acute Myeloid Leukemia (AML) disease subtypes based on survival, DNA damage response and apoptosis pathways. METHODOLOGY AND PRINCIPAL FINDINGS:Thirty four diagnostic non-M3 AML samples from patients with known clinical outcome were treated with a panel of myeloid growth factors and cytokines, as well as with apoptosis-inducing agents. Analysis of induced Jak/Stat and PI3K pathway responses in blasts from individual patient samples identified subgroups with distinct signaling profiles that were not seen in the absence of a modulator. In vitro exposure of patient samples to etoposide, a DNA damaging agent, revealed three distinct "DNA damage response (DDR)/apoptosis" profiles: 1) AML blasts with a defective DDR and failure to undergo apoptosis; 2) AML blasts with proficient DDR and failure to undergo apoptosis; 3) AML blasts with proficiency in both DDR and apoptosis pathways. Notably, AML samples from clinical responders fell within the "DDR/apoptosis" proficient profile and, as well, had low PI3K and Jak/Stat signaling responses. In contrast, samples from clinical non responders had variable signaling profiles often with in vitro apoptotic failure and elevated PI3K pathway activity. Individual patient samples often harbored multiple, distinct, leukemia-associated cell populations identifiable by their surface marker expression, functional performance of signaling pathway in the face of cytokine or growth factor stimulation, as well as their response to apoptosis-inducing agents. CONCLUSIONS AND SIGNIFICANCE:Characterizing and tracking changes in intracellular pathway profiles in cell subpopulations both at baseline and under therapeutic pressure will likely have important clinical applications, potentially informing the selection of beneficial targeted agents, used either alone or in combination with chemotherapy

    Quantifying Individual Variation in the Propensity to Attribute Incentive Salience to Reward Cues

    Get PDF
    If reward-associated cues acquire the properties of incentive stimuli they can come to powerfully control behavior, and potentially promote maladaptive behavior. Pavlovian incentive stimuli are defined as stimuli that have three fundamental properties: they are attractive, they are themselves desired, and they can spur instrumental actions. We have found, however, that there is considerable individual variation in the extent to which animals attribute Pavlovian incentive motivational properties (“incentive salience”) to reward cues. The purpose of this paper was to develop criteria for identifying and classifying individuals based on their propensity to attribute incentive salience to reward cues. To do this, we conducted a meta-analysis of a large sample of rats (N = 1,878) subjected to a classic Pavlovian conditioning procedure. We then used the propensity of animals to approach a cue predictive of reward (one index of the extent to which the cue was attributed with incentive salience), to characterize two behavioral phenotypes in this population: animals that approached the cue (“sign-trackers”) vs. others that approached the location of reward delivery (“goal-trackers”). This variation in Pavlovian approach behavior predicted other behavioral indices of the propensity to attribute incentive salience to reward cues. Thus, the procedures reported here should be useful for making comparisons across studies and for assessing individual variation in incentive salience attribution in small samples of the population, or even for classifying single animals

    Neuromechanical response of the upper body to unexpected perturbations during gait initiation in young and older adults

    Get PDF
    Background: Control of upper body motion deteriorates with ageing leading to impaired ability to preserve balance during gait, but little is known on the contribution of the upper body to preserve balance in response to unexpected perturbations during locomotor transitions, such as gait initiation. Aim: To investigate differences between young and older adults in the ability to modify the trunk kinematics and muscle activity following unexpected waist lateral perturbations during gait initiation. Methods: Ten young (25 ± 2 years) and ten older adults (73 ± 5 years) initiated locomotion from stance while a lateral pull was randomly applied to the pelvis. Two force plates were used to define the feet centre-of-pressure displacement. Angular displacement of the trunk in the frontal plane was obtained through motion analysis. Surface electromyography of cervical and thoracic erector spinae muscles was recorded bilaterally. Results: A lower trunk lateral bending towards the stance leg side in the preparatory phase of gait initiation was observed in older participants following perturbation. Right thoracic muscle activity was increased in response to the perturbation during the initial phase of gait initiation in young (+ 68%) but not in older participants (+ 7%). Conclusions: The age-related reduction in trunk movement could indicate a more rigid behaviour of the upper body employed by older compared to young individuals in response to unexpected perturbations preceding the initiation of stepping. Older adults’ delayed activation of thoracic muscles could suggest impaired reactive mechanisms that may potentially lead to a fall in the early stages of the gait initiation

    Tissue resident stem cells: till death do us part

    Get PDF

    SEER Data: It Can Be Thought Provoking, But Where Do We Go From Here?

    No full text

    In Reply: Local Therapy in Stage IV Breast Cancer Patients

    No full text
    corecore