247 research outputs found

    Unexpected host dependency of Antarctic Nanohaloarchaeota

    Get PDF
    In hypersaline environments, Nanohaloarchaeota (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota [DPANN] superphylum) are thought to be free-living microorganisms. We report cultivation of 2 strains of Antarctic Nanohaloarchaeota and show that they require the haloarchaeon Halorubrum lacusprofundi for growth. By performing growth using enrichments and fluorescence-activated cell sorting, we demonstrated successful cultivation of Candidatus Nanohaloarchaeum antarcticus, purification of Ca. Nha. antarcticus away from other species, and growth and verification of Ca. Nha. antarcticus with Hrr. lacusprofundi; these findings are analogous to those required for fulfilling Koch’s postulates. We use fluorescent in situ hybridization and transmission electron microscopy to assess cell structures and interactions; metagenomics to characterize enrichment taxa, generate metagenome assembled genomes, and interrogate Antarctic communities; and proteomics to assess metabolic pathways and speculate about the roles of certain proteins. Metagenome analysis indicates the presence of a single species, which is endemic to Antarctic hypersaline systems that support the growth of haloarchaea. The presence of unusually large proteins predicted to function in attachment and invasion of hosts plus the absence of key biosynthetic pathways (e.g., lipids) in metagenome assembled genomes of globally distributed Nanohaloarchaeota indicate that all members of the lineage have evolved as symbionts. Our work expands the range of archaeal symbiotic lifestyles and provides a genetically tractable model system for advancing understanding of the factors controlling microbial symbiotic relationships

    The Lack of ADAM17 Activity during Embryonic Development Causes Hemorrhage and Impairs Vessel Formation

    Get PDF
    Background: ADAM17/TACE activity is important during embryonic development. We wished to investigate possible roles of this metalloprotease, focusing on vascular development. Methodology/Principal Findings: Mice mutant in the enzymatic activity of ADAM17 were examined at various stages of embryonic development for vascular pattern and integrity using markers for vessel wall cells. We observed hemorrhage and edema starting at embryonic day E14.5 and becoming more severe as development proceeded; prior to embryonic day E14.5, embryos appeared normal. Staining for PECAM-1/CD31 revealed abnormalities in the patterns of branching of the embryonic vasculature at E14.5. Conclusions/Significance: These abnormalities preceded association of pericytes or monocyte/macrophage cells with the affected vessels and, therefore, presumably arise from defects in endothelial function consequent upon failure of ADAM17 to cleave one or more substrates involved in vascular development, such as Notch, Delta, VEGFR2 or JAM-A. Our study demonstrates a role for ADAM17 in modulating embryonic vessel development and function

    Phase Ib study of NGR–hTNF, a selective vascular targeting agent, administered at low doses in combination with doxorubicin to patients with advanced solid tumours

    Get PDF
    Contains fulltext : 81937timmer-bonte.pdf (publisher's version ) (Closed access)BACKGROUND: Asparagine-glycine-arginine-human tumour necrosis factor (NGR-hTNF) is a vascular targeting agent exploiting a tumour-homing peptide (NGR) that selectively binds to aminopeptidase N/CD13, overexpressed on tumour blood vessels. Significant preclinical synergy was shown between low doses of NGR-TNF and doxorubicin. METHODS: The primary aim of this phase I trial was to verify the safety of low-dose NGR-hTNF combined with doxorubicin in treating refractory/resistant solid tumours. Secondary objectives included pharmacokinetics (PKs), pharmacodynamics, and clinical activity. In all 15 patients received NGR-hTNF (0.2-0.4-0.8-1.6 microg m(-2)) and doxorubicin (60-75 mg m(-2)), both given intravenously every 3 weeks. RESULTS: No dose-limiting toxicity occurred and the combination was well tolerated. Around two cases of neutropenic fevers, lasting 2 days, and two cases of cardiac ejection-fraction drops, one asymptomatic and the other symptomatic, were registered. Only 11% of the adverse events were related to NGR-hTNF and were short-lasting and mild-to-moderate in severity. There was no apparent PK interaction and the shedding of soluble TNF-receptors did not increase to 0.8 microg m(-2). One partial response (7%), at dose level 0.8 microg m(-2), and 10 stable diseases (66%), lasting for a median duration of 5.6 months, were observed. CONCLUSIONS: NGR-hTNF plus doxorubicin was administered safely and showed promising activity in patients pre-treated with anthracyclines. The dose level of 0.8 microg m(-2) NGR-hTNF plus doxorubicin 75 mg m(-2) was selected for phase II development

    TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model

    Get PDF
    TNF is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases, but also in metastasis in certain types of cancer. In terms of therapy, TNF is targeted by anti-TNF neutralising monoclonal antibodies or soluble TNF receptors. Recently, a novel strategy based on the generation of self anti-TNF antibodies (TNF autovaccination) has been developed. We have previously shown that TNF autovaccination successfully generates high anti-TNF antibody titres, blocks TNF and ameliorates collagen-induced arthritis in DBA/1 mice. In this study, we examined the ability of TNF autovaccination to generate anti-TNF antibody titres and block metastasis in the murine B16F10 melanoma model. We found that immunisation of C57BL/6 mice with TNF autovaccine produces a 100-fold antibody response to TNF compared to immunisation with phosphate-buffered saline vehicle control and significantly reduces both the number (P<0.01) and size of metastases (P<0.01) of B16F10 melanoma cells. This effect is also observed when an anti-TNF neutralising monoclonal antibody is administered, confirming the essential role TNF plays in metastasis in this model. This study suggests that TNF autovaccination is a cheaper and highly efficient alternative that can block TNF and reduce metastasis in vivo and trials with TNF autovaccination are already underway in patients with metastatic cancer

    Activated CD4+ T cells enhance radiation effect through the cooperation of interferon-Ξ³ and TNF-Ξ±

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approaches that enhance radiation effect may lead to improved clinical outcome and decrease toxicity. Here we investigated whether activated CD4+ T cells (aCD4) can serve as an effective radiosensitizer.</p> <p>Methods</p> <p>CD4+ T cells were activated with anti-CD3 and anti-CD28 mAbs. Hela cells were presensitized with aCD4 or conditioned supernatant (aCD4S) or recombinant cytokines for 2 days, followed Ξ³-irradiation. The treated cells were cultured for an additional 2 to 5 days for cell proliferation, cell cycle, and western blot assays. For confirmation, other cancer cell lines were also used.</p> <p>Results</p> <p>Presensitization of tumor cells with aCD4 greatly increased tumor cell growth inhibition. Soluble factors secreted from activated CD4<sup>+ </sup>T cells were primarily responsible for the observed effect. IFN-Ξ³ seemed to play a major role. TNF-Ξ±, though inactive by itself, significantly augmented the radiosensitizing activity of IFN-Ξ³. aCD4S, but not IFN-Ξ³ or IFN-Ξ³/TNF-Ξ± combination, was found to enhance the Ξ³-irradiation-induced G2/M phase arrest. Bax expression was highly upregulated in Hela cells presensitized with aCD4S followed by Ξ³-irradiation. The radio-sensitizing activity of aCD4 is not uniquely observed with Hela cell line, but also seen with other cancer cell lines of various histology.</p> <p>Conclusions</p> <p>Our findings suggest possible molecular and cellular mechanisms that may help explain the radio-sensitization effect of activated lymphocytes, and may provide an improved strategy in the treatment of cancer with radiotherapy.</p

    Development of a novel DDS for site-specific PEGylated proteins

    Get PDF
    Because of the shifted focus in life science research from genome analyses to genetic and protein function analyses, we now know functions of numerous proteins. These analyses, including those of newly identified proteins, are expected to contribute to the identification of proteins of therapeutic value in various diseases. Consequently, pharmacoproteomic-based drug discovery and development of protein therapies attracted a great deal of attention in recent years. Clinical applications of most of these proteins are, however, limited because of their unexpectedly low therapeutic effects, resulting from the proteolytic degradation in vivo followed by rapid removal from the circulatory system. Therefore, frequent administration of excessively high dose of a protein is required to observe its therapeutic effect in vivo. This often results in impaired homeostasis in vivo and leads to severe adverse effects. To overcome these problems, we have devised a method for chemical modification of proteins with polyethylene glycol (PEGylation) and other water-soluble polymers. In addition, we have established a method for creating functional mutant proteins (muteins) with desired properties, and developed a site-specific polymer-conjugation method to further improve their therapeutic potency. In this review, we are introducing our original protein-drug innovation system mentioned above

    Activity and safety of NGR-hTNF, a selective vascular-targeting agent, in previously treated patients with advanced hepatocellular carcinoma

    Get PDF
    Background:Hepatocellular carcinoma (HCC) is a highly vascularised and poor-prognosis tumour. NGR-hTNF is a vascular-targeting agent consisting of human tumour necrosis factor-alpha fused to the tumour-homing peptide NGR, which is able to selectively bind an aminopeptidase N overexpressed on tumour blood vessels.Methods:Twenty-seven patients with advanced-stage disease resistant to either locoregional (59%; range, 1-3), systemic treatments (52%; range, 1-3) or both (33%) received NGR-hTNF 0.8 gm-2 once every 3 weeks. The primary aim of the study was progression-free survival (PFS).Results:No grade 3-4 treatment-related toxicities were noted. Common toxicity included mild-to-moderate, short-lived chills (63%). Median PFS was 2.3 months (95% CI: 1.7-2.9). A complete response ongoing after 20 months was observed in a sorafenib-refractory patient and a partial response in a Child-Pugh class-B patient, yielding a response rate of 7%. Six patients (22%) experienced stable disease. The disease control rate (DCR) was 30% and was maintained for a median PFS time of 4.3 months. Median survival was 8.9 months (95% CI: 7.5-10.2). In a subset of 12 sorafenib-resistant patients, the response rate was 8% and the median survival was 9.5 months.Conclusion:NGR-hTNF was well tolerated and showed single-agent activity in HCC. Further investigation in HCC is of interest

    Expression of NF-ΞΊB p50 in Tumor Stroma Limits the Control of Tumors by Radiation Therapy

    Get PDF
    Radiation therapy aims to kill cancer cells with a minimum of normal tissue toxicity. Dying cancer cells have been proposed to be a source of tumor antigens and may release endogenous immune adjuvants into the tumor environment. For these reasons, radiation therapy may be an effective modality to initiate new anti-tumor adaptive immune responses that can target residual disease and distant metastases. However, tumors engender an environment dominated by M2 differentiated tumor macrophages that support tumor invasion, metastases and escape from immune control. In this study, we demonstrate that following radiation therapy of tumors in mice, there is an influx of tumor macrophages that ultimately polarize towards immune suppression. We demonstrate using in vitro models that this polarization is mediated by transcriptional regulation by NFΞΊB p50, and that in mice lacking NFΞΊB p50, radiation therapy is more effective. We propose that despite the opportunity for increased antigen-specific adaptive immune responses, the intrinsic processes of repair following radiation therapy may limit the ability to control residual disease
    • …
    corecore