750 research outputs found

    Biomolecular sensing using surface micromachined silicon plates

    Get PDF
    Micromachined sensors to detect surface stress changes associated with interactions between an immobilized chemically selective receptor and a target analyte are presented. The top isolated sensing surface of a free-standing silicon plate is prepared with a thin Au layer, followed by a covalent attachment of chemical or biomolecule forming a chemically-selective surface. Surface stress changes in air are measured capacitively due to the formation of an alkanethiol self-assembled monolayer (SAM). Detection of biomolecular binding in liquid samples is measured optically using the streptavidin-biotin complex and AM. tuberculosis antigen-antibody system used for clinical tuberculosis (TB) diagnosis

    Contexting Koreans: Does the High/Low Model Work?

    Full text link
    South Korea is assumed to be a high-context culture with extensive shared information and an emphasis on relationships in doing business. The follow ing study reported here tests this assumption and illustrates similarities and differences between Korean and American writers in an attempt to document language differences between high- and low- context societies. Data in the texts studied did not confirm the high/low contextfeatures expected. South Korean texts showed more similarities to than differences from the American texts, and the language features found suggest a more complex context situa tion than the high/low context model may be able to accommodate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66563/2/10.1177_108056999806100403.pd

    Announcement of the Summer School of Biology for 1929 July 6-August 16

    Full text link
    Official Publication of Cornell University V.20 1928/2

    Functional chromatin features are associated with structural mutations in cancer.

    Get PDF
    BACKGROUND: Structural mutations (SMs) play a major role in cancer development. In some cancers, such as breast and ovarian, DNA double-strand breaks (DSBs) occur more frequently in transcribed regions, while in other cancer types such as prostate, there is a consistent depletion of breakpoints in transcribed regions. Despite such regularity, little is understood about the mechanisms driving these effects. A few works have suggested that protein binding may be relevant, e.g. in studies of androgen receptor binding and active chromatin in specific cell types. We hypothesized that this behavior might be general, i.e. that correlation between protein-DNA binding (and open chromatin) and breakpoint locations is common across divergent cancers. RESULTS: We investigated this hypothesis by comprehensively analyzing the relationship among 457 ENCODE protein binding ChIP-seq experiments, 125 DnaseI and 24 FAIRE experiments, and 14,600 SMs from 8 diverse cancer datasets covering 147 samples. In most cancers, including breast and ovarian, we found enrichment of protein binding and open chromatin in the vicinity of SM breakpoints at distances up to 200 kb. Furthermore, for all cancer types we observed an enhanced enrichment in regions distant from genes when compared to regions proximal to genes, suggesting that the SM-induction mechanism is independent from the bias of DSBs to occur near transcribed regions. We also observed a stronger effect for sites with more than one protein bound. CONCLUSIONS: Protein binding and open chromatin state are associated with nearby SM breakpoints in many cancer datasets. These observations suggest a consistent mechanism underlying SM locations across different cancers

    D-brane annihilation, renormalization-group flow and non-linear σ\sigma-model for the ADHM construction

    Full text link
    In this note D9D9- and anti-D9D9-brane annihilation in type I string theory is probed by a D1D1-brane. We consider the covariant Green-Schwarz or twistor formulation of the probe theory. We expect the theory to be κ\kappa-invariant after the annihilation is completed. Conditions of the κ\kappa-invariance of the theory impose constraints on the background tachyon field. Solutions to the constraints define tachyon values which correspond to type I D5D5-branes as remnants of the annihilation. As a byproduct we get a theory which lies in the same universality class as the non-linear σ\sigma-model for the Atiyah-Drinfeld-Hitchin-Manin construction.Comment: 11pages, Latex, Language of the text is considerably improve

    Idling Magnetic White Dwarf in the Synchronizing Polar BY Cam. The Noah-2 Project

    Full text link
    Results of a multi-color study of the variability of the magnetic cataclysmic variable BY Cam are presented. The observations were obtained at the Korean 1.8m and Ukrainian 2.6m, 1.2m and 38-cm telescopes in 2003-2005, 56 observational runs cover 189 hours. The variations of the mean brightness in different colors are correlated with a slope dR/dV=1.29(4), where the number in brackets denotes the error estimates in the last digits. For individual runs, this slope is much smaller ranging from 0.98(3) to 1.24(3), with a mean value of 1.11(1). Near the maximum, the slope becomes smaller for some nights, indicating more blue spectral energy distribution, whereas the night-to-night variability has an infrared character. For the simultaneous UBVRI photometry, the slopes increase with wavelength from dU/dR=0.23(1) to dI/dR=1.18(1). Such wavelength dependence is opposite to that observed in non-magnetic cataclysmic variables, in an agreement to the model of cyclotron emission. The principal component analysis shows two (with a third at the limit of detection) components of variablitity with different spectral energy distribution, which possibly correspond to different regions of emission. The scalegram analysis shows a highest peak corresponding to the 200-min spin variability, its quarter and to the 30-min and 8-min QPOs. The amplitudes of all these components are dependent on wavelength and luminosity state. The light curves were fitted by a statistically optimal trigonometrical polynomial (up to 4-th order) to take into account a 4-hump structure. The dependences of these parameters on the phase of the beat period and on mean brightness are discussed. The amplitude of spin variations increases with an increasing wavelength and with decreasing brightnessComment: 30pages, 11figures, accepted in Cent.Eur.J.Phy

    Universal energy distribution for interfaces in a random field environment

    Full text link
    We study the energy distribution function ρ(E)\rho (E) for interfaces in a random field environment at zero temperature by summing the leading terms in the perturbation expansion of ρ(E)\rho (E) in powers of the disorder strength, and by taking into account the non perturbational effects of the disorder using the functional renormalization group. We have found that the average and the variance of the energy for one-dimensional interface of length LL behave as, RLlnL_{R}\propto L\ln L, ΔERL\Delta E_{R}\propto L, while the distribution function of the energy tends for large LL to the Gumbel distribution of the extreme value statistics.Comment: 4 pages, 2 figures, revtex4; the distribution function of the total and the disorder energy is include

    Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite

    Get PDF
    The inelastic electron tunneling spectrum (IETS)of highly oriented pyrolitic graphite (HOPG) has been measured with scanning tunneling spectroscopy (STS) at 6K. The observed spectral features are in very good agreement with the vibrational density of states (vDOS) of graphite calculated from first principles. We discuss the enhancement of certain phonon modes by phonon-assisted tunneling in STS based on the restrictions imposed by the electronic structure of graphite. We also demonstrate for the first time the local excitation of surface-plasmons in IETS which are detected at an energy of 40 meV.Comment: PRB rapid communication, submitte

    Anisotropic Superparamagnetism of Monodispersive Cobalt-Platinum Nanocrystals

    Full text link
    Based on the high-temperature organometallic route (Sun et al. Science 287, 1989 (2000)), we have synthesized powders containing CoPt_3 single crystals with mean diameters of 3.3(2) nm and 6.0(2) nm and small log-normal widths sigma=0.15(1). In the entire temperature range from 5 K to 400 K, the zero-field cooled susceptibility chi(T) displays significant deviations from ideal superparamagnetism. Approaching the Curie temperature of 450(10) K, the deviations arise from the (mean-field) type reduction of the ferromagnetic moments, while below the blocking temperature T_b, chi(T) is suppressed by the presence of energy barriers, the distributions of which scale with the particle volumes obtained from transmission electron microscopy (TEM). This indication for volume anisotropy is supported by scaling analyses of the shape of the magnetic absorption chi''(T,omega) which reveal distribution functions for the barriers being also consistent with the volume distributions observed by TEM. Above 200 K, the magnetization isotherms M(H,T) display Langevin behavior providing 2.5(1) mu_B per CoPt_3 in agreement with reports on bulk and thin film CoPt_3. The non-Langevin shape of the magnetization curves at lower temperatures is for the first time interpreted as anisotropic superparamagnetism by taking into account an anisotropy energy of the nanoparticles E_A(T). Using the magnitude and temperature variation of E_A(T), the mean energy barriers and 'unphysical' small switching times of the particles obtained from the analyses of chi''(T,omega) are explained. Below T_b hysteresis loops appear and are quantitatively described by a blocking model, which also ignores particle interactions, but takes the size distributions from TEM and the conventional field dependence of E_A into account.Comment: 12 pages with 10 figures and 1 table. Version accepted for publication in Phys. Rev. B . Two-column layou

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.
    corecore