50 research outputs found

    Facial emotion processing in schizophrenia : a non-specific neuropsychological deficit?

    Get PDF
    Original article can be found at : http://journals.cambridge.org/ Copyright Cambridge University PressBackground: Identification of facial emotions has been found to be impaired in schizophrenia but there are uncertainties about the neuropsychological specificity of the finding. Method: Twenty-two patients with schizophrenia and 20 healthy controls were given tests requiring identification of facial emotion, judgement of the intensity of emotional expressions without identification, familiar face recognition and the Benton Facial Recognition Test (BFRT). The schizophrenia patients were selected to be relatively intellectually preserved. Results: The patients with schizophrenia showed no deficit in identifying facial emotion, although they were slower than the controls. They were, however, impaired on judging the intensity of emotional expression without identification. They showed impairment in recognizing familiar faces but not on the BFRT. Conclusions: When steps are taken to reduce the effects of general intellectual impairment, there is no deficit in identifying facial emotions in schizophrenia. There may, however, be a deficit in judging emotional intensity. The impairment found in naming familiar faces is consistent with other evidence of semantic memory impairment in the disorder.Peer reviewe

    Bridging brain and cognition: a multilayer network analysis of brain structural covariance and general intelligence in a developmental sample of struggling learners

    Get PDF
    Network analytic methods that are ubiquitous in other areas, such as systems neuroscience, have recently been used to test network theories in psychology, including intelligence research. The network or mutualism theory of intelligence proposes that the statistical associations among cognitive abilities (e.g., specific abilities such as vocabulary or memory) stem from causal relations among them throughout development. In this study, we used network models (specifically LASSO) of cognitive abilities and brain structural covariance (grey and white matter) to simultaneously model brain-behavior relationships essential for general intelligence in a large (behavioral, N = 805; cortical volume, N = 246; fractional anisotropy, N = 165) developmental (ages 5-18) cohort of struggling learners (CALM). We found that mostly positive, small partial correlations pervade our cognitive, neural, and multilayer networks. Moreover, using community detection (Walktrap algorithm) and calculating node centrality (absolute strength and bridge strength), we found convergent evidence that subsets of both cognitive and neural nodes play an intermediary role 'between' brain and behavior. We discuss implications and possible avenues for future studies.Stress and Psychopatholog

    Innovative solutions to novel drug development in mental health

    Get PDF
    There are many new advances in neuroscience and mental health which should lead to a greater understanding of the neurobiological dysfunction in neuropsychiatric disorders and new developments for early, effective treatments. To do this, a biomarker approach combining genetic, neuroimaging, cognitive and other biological measures is needed. The aim of this article is to highlight novel approaches for pharmacological and non-pharmacological treatment development. This article suggests approaches that can be taken in the future including novel mechanisms with preliminary clinical validation to provide a toolbox for mechanistic studies and also examples of translation and back-translation. The review also emphasizes the need for clinician-scientists to be trained in a novel way in order to equip them with the conceptual and experimental techniques required, and emphasizes the need for private-public partnership and pre-competitive knowledge exchange. This should lead the way for important new holistic treatment developments to improve cognition, functional outcome and well-being of people with neuropsychiatric disorders

    Risk-taking in disorders of natural and drug rewards: neural correlates and effects of probability, valence, and magnitude

    Get PDF
    Pathological behaviors toward drugs and food rewards have underlying commonalities. Risk-taking has a fourfold pattern varying as a function of probability and valence leading to the nonlinearity of probability weighting with overweighting of small probabilities and underweighting of large probabilities. Here we assess these influences on risk-taking in patients with pathological behaviors toward drug and food rewards and examine structural neural correlates of nonlinearity of probability weighting in healthy volunteers. In the anticipation of rewards, subjects with binge eating disorder show greater risk-taking, similar to substance-use disorders. Methamphetamine-dependent subjects had greater nonlinearity of probability weighting along with impaired subjective discrimination of probability and reward magnitude. Ex-smokers also had lower risk-taking to rewards compared with non-smokers. In the anticipation of losses, obesity without binge eating had a similar pattern to other substance-use disorders. Obese subjects with binge eating also have impaired discrimination of subjective value similar to that of the methamphetamine-dependent subjects. Nonlinearity of probability weighting was associated with lower gray matter volume in dorsolateral and ventromedial prefrontal cortex and orbitofrontal cortex in healthy volunteers. Our findings support a distinct subtype of binge eating disorder in obesity with similarities in risk-taking in the reward domain to substance use disorders. The results dovetail with the current approach of defining mechanistically based dimensional approaches rather than categorical approaches to psychiatric disorders. The relationship to risk probability and valence may underlie the propensity toward pathological behaviors toward different types of rewards

    Schizotypy-related magnetization of cortex in healthy adolescence is colocated with expression of Schizophrenia-related genes

    Get PDF
    Background: Genetic risk is thought to drive clinical variation on a spectrum of schizophrenia-like traits, but the underlying changes in brain structure that mechanistically link genomic variation to schizotypal experience and behavior are unclear. Methods: We assessed schizotypy using a self-reported questionnaire and measured magnetization transfer as a putative microstructural magnetic resonance imaging marker of intracortical myelination in 68 brain regions in 248 healthy young people (14–25 years of age). We used normative adult brain gene expression data and partial least squares analysis to find the weighted gene expression pattern that was most colocated with the cortical map of schizotypy-related magnetization. Results: Magnetization was significantly correlated with schizotypy in the bilateral posterior cingulate cortex and precuneus (and for disorganized schizotypy, also in medial prefrontal cortex; all false discovery rate–corrected ps < .05), which are regions of the default mode network specialized for social and memory functions. The genes most positively weighted on the whole-genome expression map colocated with schizotypy-related magnetization were enriched for genes that were significantly downregulated in two prior case-control histological studies of brain gene expression in schizophrenia. Conversely, the most negatively weighted genes were enriched for genes that were transcriptionally upregulated in schizophrenia. Positively weighted (downregulated) genes were enriched for neuronal, specifically interneuronal, affiliations and coded a network of proteins comprising a few highly interactive “hubs” such as parvalbumin and calmodulin. Conclusions: Microstructural magnetic resonance imaging maps of intracortical magnetization can be linked to both the behavioral traits of schizotypy and prior histological data on dysregulated gene expression in schizophrenia

    Conservative and disruptive modes of adolescent change in human brain functional connectivity

    Get PDF
    Adolescent changes in human brain function are not entirely understood. Here, we used multiecho functional MRI (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in 298 healthy adolescents scanned 520 times. Participants were aged 14 to 26 y and were scanned on 1 to 3 occasions at least 6 mo apart. We found 2 distinct modes of age-related change in FC: “conservative” and “disruptive.” Conservative development was characteristic of primary cortex, which was strongly connected at 14 y and became even more connected in the period from 14 to 26 y. Disruptive development was characteristic of association cortex and subcortical regions, where connectivity was remodeled: connections that were weak at 14 y became stronger during adolescence, and connections that were strong at 14 y became weaker. These modes of development were quantified using the maturational index (MI), estimated as Spearman’s correlation between edgewise baseline FC (at 14 y, FC14) and adolescent change in FC ( ), at each region. Disruptive systems (with negative MI) were activated by social cognition and autobiographical memory tasks in prior fMRI data and significantly colocated with prior maps of aerobic glycolysis (AG), AG-related gene expression, postnatal cortical surface expansion, and adolescent shrinkage of cortical thickness. The presence of these 2 modes of development was robust to numerous sensitivity analyses. We conclude that human brain organization is disrupted during adolescence by remodeling of FC between association cortical and subcortical areas

    CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice

    Get PDF
    Neuroinflammation and microglial activation are significant processes in Alzheimer's disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer's disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer's disease and other tau-mediated neurodegenerative diseases

    Inflammatory biomarkers in Alzheimer&apos;s disease plasma

    Get PDF
    Introduction: Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a \u201cHoly Grail\u201d of AD research and intensively sought; however, there are no well-established plasma markers. Methods: A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed. Results: Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APO\u3b54 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71). Discussion: Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation
    corecore