1,139 research outputs found

    Asymptotic equilibrium and stability of fuzzy differential equations

    Get PDF
    AbstractThe local existence and uniqueness theorems and the global existence of solutions were investigated in [1–3], respectively, for the Cauchy problem of fuzzy-valued functions of a real variable whose values are in the fuzzy number space (En, D). In this paper, we first study the asymptotic equilibrium for fuzzy evolution equations. Then, the stability properties of the trivial fuzzy solution of the perturbed semilinear fuzzy evolution equations are investigated by extending the Lyapunov's direct method

    On the 3-particle scattering continuum in quasi one dimensional integer spin Heisenberg magnets

    Full text link
    We analyse the three-particle scattering continuum in quasi one dimensional integer spin Heisenberg antiferromagnets within a low-energy effective field theory framework. We exactly determine the zero temperature dynamical structure factor in the O(3) nonlinear sigma model and in Tsvelik's Majorana fermion theory. We study the effects of interchain coupling in a Random Phase Approximation. We discuss the application of our results to recent neutron-scattering experiments on the Haldane-gap material CsNiCl3{\rm CsNiCl_3}.Comment: 8 pages of revtex, 5 figures, small changes, to appear in PR

    Correlations around an interface

    Full text link
    We compute one-loop correlation functions for the fluctuations of an interface using a field theory model. We obtain them from Feynman diagrams drawn with a propagator which is the inverse of the Hamiltonian of a Poschl-Teller problem. We derive an expression for the propagator in terms of elementary functions, show that it corresponds to the usual spectral sum, and use it to calculate quantities such as the surface tension and interface profile in two and three spatial dimensions. The three-dimensional quantities are rederived in a simple, unified manner, whereas those in two dimensions extend the existing literature, and are applicable to thin films. In addition, we compute the one-loop self-energy, which may be extracted from experiment, or from Monte Carlo simulations. Our results may be applied in various scenarios, which include fluctuations around topological defects in cosmology, supersymmetric domain walls, Z(N) bubbles in QCD, domain walls in magnetic systems, interfaces separating Bose-Einstein condensates, and interfaces in binary liquid mixtures.Comment: RevTeX, 13 pages, 6 figure

    Emergence of Anti-Cancer Drug Resistance: Exploring the Importance of the Microenvironmental Niche via a Spatial Model

    Full text link
    Practically, all chemotherapeutic agents lead to drug resistance. Clinically, it is a challenge to determine whether resistance arises prior to, or as a result of, cancer therapy. Further, a number of different intracellular and microenvironmental factors have been correlated with the emergence of drug resistance. With the goal of better understanding drug resistance and its connection with the tumor microenvironment, we have developed a hybrid discrete-continuous mathematical model. In this model, cancer cells described through a particle-spring approach respond to dynamically changing oxygen and DNA damaging drug concentrations described through partial differential equations. We thoroughly explored the behavior of our self-calibrated model under the following common conditions: a fixed layout of the vasculature, an identical initial configuration of cancer cells, the same mechanism of drug action, and one mechanism of cellular response to the drug. We considered one set of simulations in which drug resistance existed prior to the start of treatment, and another set in which drug resistance is acquired in response to treatment. This allows us to compare how both kinds of resistance influence the spatial and temporal dynamics of the developing tumor, and its clonal diversity. We show that both pre-existing and acquired resistance can give rise to three biologically distinct parameter regimes: successful tumor eradication, reduced effectiveness of drug during the course of treatment (resistance), and complete treatment failure

    A comprehensive methodology for determining the most informative mammographic features

    Get PDF
    This study aims to determine the most informative mammographic features for breast cancer diagnosis using mutual information (MI) analysis. Our Health Insurance Portability and Accountability Act-approved database consists of 44,397 consecutive structured mammography reports for 20,375 patients collected from 2005 to 2008. The reports include demographic risk factors (age, family and personal history of breast cancer, and use of hormone therapy) and mammographic features from the Breast Imaging Reporting and Data System lexicon. We calculated MI using Shannon's entropy measure for each feature with respect to the outcome (benign/malignant using a cancer registry match as reference standard). In order to evaluate the validity of the MI rankings of features, we trained and tested naïve Bayes classifiers on the feature with tenfold cross-validation, and measured the predictive ability using area under the ROC curve (AUC). We used a bootstrapping approach to assess the distributional properties of our estimates, and the DeLong method to compare AUC. Based on MI, we found that mass margins and mass shape were the most informative features for breast cancer diagnosis. Calcification morphology, mass density, and calcification distribution provided predictive information for distinguishing benign and malignant breast findings. Breast composition, associated findings, and special cases provided little information in this task. We also found that the rankings of mammographic features with MI and AUC were generally consistent. MI analysis provides a framework to determine the value of different mammographic features in the pursuit of optimal (i.e., accurate and efficient) breast cancer diagnosis. © 2013 Society for Imaging Informatics in Medicine

    Equation of state and phonon frequency calculations of diamond at high pressures

    Full text link
    The pressure-volume relationship and the zone-center optical phonon frequency of cubic diamond at pressures up to 600 GPa have been calculated based on Density Functional Theory within the Local Density Approximation and the Generalized Gradient Approximation. Three different approaches, viz. a pseudopotential method applied in the basis of plane waves, an all-electron method relying on Augmented Plane Waves plus Local Orbitals, and an intermediate approach implemented in the basis of Projector Augmented Waves have been used. All these methods and approximations yield consistent results for the pressure derivative of the bulk modulus and the volume dependence of the mode Grueneisen parameter of diamond. The results are at variance with recent precise measurements up to 140 GPa. Possible implications for the experimental pressure determination based on the ruby luminescence method are discussed.Comment: 10 pages, 6 figure

    Systematics in the Electron Spectrum Measured by ATIC

    Get PDF
    An analysis of different parameters to separate electrons from protons in the ATIC experiment has been performed. Five separate discriminants were studied by different Monte Carlo programs, leading to a variety of results. Application to the ATIC data indicates the range of variation possible in the interpretation of the data. The results of this analysis, when compared with the published results [5], show good agreement in the most interesting region of energy (from 90 GeV to 600 GeV). The measured electron spectrum is compared with the recent data reported by Fermi/LAT, and there is no major disagreement between ATIC s results and Fermi/LAT. Finally, possible systematics-free, short energy scale features of the ATIC electron spectrum are mentioned. Keywords: ATIC, electron spectrum, fine structur

    Performance of the CREAM calorimeter in accelerator beam test

    Get PDF
    The CREAM calorimeter, designed to measure the spectra of cosmic-ray nuclei from under 1 TeV to 1000 TeV, is a 20 radiation length (X0) deep sampling calorimeter. The calorimeter is comprised of 20 layers of tungsten interleaved with 20 layers of scintillating fiber ribbons, and is preceded by a pair of graphite interaction targets providing about 0.42 proton interaction lengths (\lambda int). The calorimeter was placed in one of CERN's SPS accelerator beams for calibration and testing. Beams of 150 GeV electrons were used for calibration, and a variety of electron, proton, and nuclear fragment beams were used to test the simulation model of the detector. In this paper we discuss the performance of the calorimeter in the electron beam and compare electron beam data with simulation results.The CREAM calorimeter, designed to measure the spectra of cosmic-ray nuclei from under 1 TeV to 1000 TeV, is a 20 radiation length (X0) deep sampling calorimeter. The calorimeter is comprised of 20 layers of tungsten interleaved with 20 layers of scintillating fiber ribbons, and is preceded by a pair of graphite interaction targets providing about 0.42 proton interaction lengths (\lambda int). The calorimeter was placed in one of CERN's SPS accelerator beams for calibration and testing. Beams of 150 GeV electrons were used for calibration, and a variety of electron, proton, and nuclear fragment beams were used to test the simulation model of the detector. In this paper we discuss the performance of the calorimeter in the electron beam and compare electron beam data with simulation results
    corecore