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A b s t r a c t - - T h e  local existence and uniqueness theorems and the global existence of solutions were 
investigated in [1-3], respectively, for the Cauchy problem of fuzzy-valued functions of a real variable 
whose values are in the fuzzy number space (En,D). In this paper, we first study the asymptotic 
equilibrium for fuzzy evolution equations. Then, the stability properties of the trivial fuzzy solution 
of the perturbed semilinear fuzzy evolution equations are investigated by extending the Lyapunov's 
direct method. (~) 2005 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Using the H-differentiability due to Puri and Ralescu [4], fuzzy differential equations were studied 
by Kaleva [5,6] and Wu and Song [1-3], for the fuzzy-valued functions of a real variable whose 
values are normal, convex, upper semicontinuous, and are compactly supported fuzzy sets in R n. 
The local existence and uniqueness theorems, for the Cauchy problem x'( t )  = f ( t ,  x) ,  x(t0) = x0 
when the fuzzy valued function f satisfies the generalized Lipschitz condition, were given in [1]. 
The existence theorems under compactness-type conditions were studied in [2]. Based on these 
preceding works, the global existence of solutions of the Cauchy problem were investigated in [3]. 
This paper is devoted to the investigation of the asymptotic behavior and stability of fuzzy differ- 
ential equations. In Section 2, some preliminaries concerning fuzzy number space, integrability, 
and differentiability [5] for fuzzy-valued functions are summarized and the comparison theorem 
for classical ordinary differential equations [7] are listed. The asymptotic equilibrium for fuzzy 
evolution equations are investigated in Section 3. Finally, in Section 4, we study the stability 
properties of perturbed semilinear fuzzy evolution equations by extending the Lyapunov's direct 
method. 
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2. P R E L I M I N A R I E S  

Let Pk(R ~) denote the family of all nonempty  compact  convex subsets of R n and define the 
addition and scalar multiplication in Pk(R "~) as usual. Denote  

E ~ = { ~ :  R ~ -~ [0, 1] l ~ satis~es ( i )-( iv)  below}, 

where 

(i) u is normal,  i.e., there exists an x0 E R n, such tha t  u(xo) = 1, 

(ii) u is fuzzy convex, i.e., u()~x + (1 -)~)y) >_ min{u(x) ,  u(y) } for any x, y E R '~ and 0 < )~ < 1, 
(iii) u is upper  semicontinuous, 

(iv) [u] ° -- c l (x  e R ~ ]u(x) > 0} is compact .  

For 0 < a _< 1, denote [u] ~ = {x e R '~ ] u(x) > a}. Then  from (i)-(iv),  it follows tha t  the 
~-level set [~]" e P~(R ~) for all 0 < .  < 1. 

According to Zadeh 's  extension principle, we have addit ion and scalar multiplication in fuzzy 
number  space E ~ as follows: 

[~ + v] - = [~]- + Iv]", [k~] - = k[~] - ,  

where u ,v  E E ",  k E R, and 0 < a < 1. 
Define D : E '~ × E n --~ [0, c~) by the equation 

D(u,v) = sup d([u] ",[v]~),  
0<:c~<l 

where d is the Hausdorff  metric  defined in Pk(R'~). Then  it is easy to see tha t  D is a metric 
in E ~. Using the results in [8], we have 

(1) (E  '~, D) is a complete metr ic  space; 
(2) D(u + w,v  + w) = D(u,v) for all u ,v ,w  6 En; 
(3) D(ku, kv) = IklD(u,v) for all u,v 6 Z ~ and k e R. 

Let  T = [to, to +p ]  C R (p > 0) be  a compact  interval. The  fuzzy-valued function F : T --+ E = 
is called strongly measurable,  if for every a E [0, 1] the set-valued function F~ : T --* Pk(R ~) 
defined by 

F,( t )  --[F(t)]" 

is Lebesgue measurable,  where Pk(R n) is endowed with  the topology generated by the Hausdorff 
metric  d. 

A function F : T ~ E '~ is called integrably bounded,  if there exists an integrable function h, 
such tha t  ]]zl] < h(t) for all x e Fo(t). 

DEFINITION 2.1. Let  F : T ---* En.The integral of F over T, denoted by fT F(t) dr, is defined 
levelwise by the equation 

F(t) dt = Fa(t) dt 

= { /Tf( t)dt]  f : T " R~ is a measurable selection for F~} , 

for a110 < a < 1. 

A strongly measurable  and integrably bounded function F : T --+ E n is said to be integrable 
over T if fT F( t )d t  E E '~. From [5], we know tha t  if F : T --* E '~ is continuous, then it is 
integrable. 

Let  x ,y  E E ~. If  there exist a z C E '~, such tha t  x -- y + z, then we call z the H-difference 
of x and y, denoted by x - y. 
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DEFINITION 2.2. A function F : T --* E n is differentiable at tl  6 T, i f  there exists an F' (tl ) E E ~, 

such that the limits 
lira F ( h  + h) - . .F(h)  

h-.+O h 

and 
lim F(tl)  - F(t l  - h) 

h--*+O h 

exist and are equal to F'(t l) .  

Here, the limits are taken in the metric  space (E  ~, D).  At the endpoint  of T, we consider only 
one-sided derivatives. 

I f  F : T --* E n is differentiable at t l  E T, then we say tha t  F'(t l )  is the fuzzy derivative of 
F(t) at  the point t l .  

The  integrabili ty and H-differentiabili ty propert ies of the fuzzy-valued functions can be referred 
to [5]. 

In addition, we denote a continuous fuzzy-valued function f : T x ~ --* E ~ by f E C[T x ~, En], 
where f~ C E n is an open set. 

PROPOSITION 2.1. Assume that f E C[T x f~,E~]. A function x : T -* f~ is a solution to the 
problem x' = f( t ,  X), x(to) = xo if and only if it is continuous and satisfies the integral equation 

for ali t E T (see [5]). 

//o x(t) = Xo + f(s ,  x(s)) ds, 

PROPOSITION 2.2. Let  G C R 2 be an open set, g E C[G,R], (to,uo) E G. Suppose that 
the max /mum solution to the initial value problem u' = g(t, u), u(to) = uo is r(t) and its largest 
interval of existence of right solution is [to, to+a). I f  m(t) e C[(to, to+a), R] satisfies (t, re(t)) 6 G 
for all t 6 [to, to + a); m(to) ~_ uo, and 

D+m(t) < g(t, m(t)), V t 6 [to, to + a) \ F, 

where D + is one of the four Dini derivatives, F a t  most is a countable set on [to, to + a). Then 
we must have (see [7]) 

re(t) __ r(t),  v t e [to, to + a). 

PROPOSITION 2.3. ASCOLI-ARZELA THEOREM. Let F be an equicontinuous family of fuzzy- 
valued functions from I into E "~. Let x,~(t) be a sequence in F such that, for each t E I, the set 
{x,~(t) : n _> 1} is relatively compact in E ~, i.e., the closure of the set  {x,~(t) : n _> 1} is compact. 
Then there exists a subsequenee { xn~ ( t ) } which converges uniformly on I to a continuous function 
x(t) (see [9]). 

Kuratowski ' s  measure  of noncompactness  [9] is summarized in the following. 

DEFINITION 2.3. Let  S be an arbitrary bounded subset of the fuzzy number metric space (E  '~, D), 
then Kuratowski's measure of noncompactness is defined as 

a(S) = inf {5 > 0 I S admits a finite covering of sets of diameter < 5}. 

PROPOSITION 2.4. The measure of noncompactness has the following properties (S, T denote 
two bounded subsets of E n, k is a real number): 

(i) a(S) = 0 if and only if  S is relatively compact; 
(ii) S C T implies a(S) < a(T); 

(iii) a ( S )  = a(S); 
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(iv) a(S  U T) = max{a(S) ,  a(T)}; 
(v) ~ ( k s )  = Ikl~(s ) ,  where  kS  = {~ = kz  I z e S} ;  

(vi) a ( S + T ) < _ a ( S ) + a ( T ) , w h e r e S + T = { x = y + z ] y e S ,  z E T } ;  
(vii) a(CoS) = a(S); 

(viii) a (S)  is uniform continuous on Hausdorff distance d defined as follows: 

d(S1,S2) = max ~ sup p(x, S1), sup p(x, S2) ~ , 
k zES2 zeal ) 

where p(x, $1) denotes the distance from the point x to the set $1, i.e., for any given s > O, 
there exists an 6 > O, such that  for any two bounded subsets $1 and $2 with d(S1, $2) < 6 
implies  I~ (&)  - ~(S2)l  < e .  

PROPOSITION 2.5. Assume that 

(1) f ( t , x )  is locally Lipschitzian in x for (t ,x) E ] x En; 
(2) D(f( t ,  x), O) < g(t, D(x, 0)), V (t, x) E J x E~; 
(3) g E C[J x [0, co), [0, ~) ] ,  g(t, u) is nondecreasing in u >_ 0 for each t 6 J, and maximal 

solution r(t, to, uo) of the scalar initial value problem 

~' = g(t, ~),  u(t0) = ~o 

exists throughout J. 

Then the largest interval of existence of any solution x(t, to, xo) of (1) with D(x, 5) <_ uo is J 
(see [3]). 

3. A S Y M P T O T I C  EQUILIBRIUM OF 
F U Z Z Y  DIFFERENTIAL EQUATIONS 

In this section, we shall continue to consider the following fuzzy differential equation: 

x' = f ( t ,  x), x(to) = x0, (1) 

under the assumptions of Proposition 2.5, where we assume tha t  f 6 C[J x E n, En], J -- [to, co), 
xo 6 E n. 

DEFINITION 3.1. We say that fuzzy equation (i) has asymptotic equilibrium if every solution 
o f ( l ) ,  such that (to,xo) E R+ x E '~ exists on [t0, oo) and tends to a limit v 6 E ~ as t  ~ oo, 
and conversely, to every given vector v E E '~ there exists a solution for (1) which tends to v as 
t ~ oo. In this paper, we denote R+ = [0, co). 

THEOREM 3.1. Under the assumptions of Proposition 2.5 , given v 6 E n, there exists a T E 
t oo [T, co), such that [to, oo) and a sequence {xn( )},~=l defined on 

(i) {x,~(t)},~°°__ 1 is equicontinuous on [T, co); 
(ii) t co {xn( )}n=l is uniformly bounded on IT, co), that  is, there exists M 6 R+, such that  

m(xn(t), O) <_ M for all t E IT, c~) and for all n; 
(iii) for each n, x~(t) is a solution of x' = f ( t , x ) ,  x (T  + n) = v. 

PROOF. Let r(t, to,D(v,O)) be the maximal solution of u' = g(t,u), u(to) = D(v,O), which 
exists and is bounded on [t0, oo). Since g(t,u) > O, r(t) is nondecreasing and consequently 
limt__.~ r(t) -- r(oo) < oo. Also we have D(v, 5) <_ r(t) <_ r(oo) for all t E [to, oo). 

For A E R+, let u(t, to,A) be the maximal solution of u' -- g(t,u), u(t0) -- A. As before, we 
have limt--.o~ u(t) = u(oo) < oo and ), --- u(to) < u(t) <_ u(oo) for all t E [to, co). However, g(t, u) 
is nondecreasing in u for each t and we have 

f? f? g(s, A) ds <_ 9(s, u(s)) ds = u(oo) - u(to) < oo. 
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Thus, we have 

s 

co 
g(s, A> ds < CQ, foranyXER+. 

to 
In particular, 

SW 
g(s, 2r(m)) ds < 00, 

to 
and so there exists T E [to, co), such that 

s O3 g(s, 2r(co)) ds < r(oo). 
T 

(2) 

Applying Proposition 2.5 for each nonnegative integer n, we know there exists a solution zn(t) 
of I’ = f(t,x), z(T + n) = II, on [T + n, oo) and 

D (xn(t), 6) I rn (t, T + n, D (~7 a)) , on [T + n, co), (4 

where am is the maximal solution of u’ = g(t, u), u(T+n) = D(v, 6). But r,(T+n) = D(v, 6) = 
r(to) 5 T-(T + n), so by Proposition 2.2 and (4) we have 

D (x&>, 6) I r(t) I r(m), on [T + n, m). (5) 

Let ull,(t, T + n, D(u,6)) b e a solution to the left for U’ = -g(t,u), u(T + n) = D(v,6). Now the 
largest interval of existence will contain [T, T + n] unless U, becomes unbounded. Suppose un(t) 
becomes unbounded and let ti,ts E [T, T + n] with ti < ts, un(ti) = 2r(o0), A, = r(oo) and 
27’(w) >_ un(t) >_ I for all t f [tl,tz]. Now 

r(m) = 2T(00) - r(m) 

= %(h> - 42) 

ta 
= 

Is 
-ids, u,(s)) ds 

t1 

s 

t2 
= ds, unts)) ds 

t1 

s 

t2 

I ds, 27-(~=3)) ds 
t1 

I 
r 

ds, 27-(m)) ds 

< r('oo). 

Hence, for each n, we know un(t) remains bounded by 2r(co) on [T, T + n]. Thus, for each n, 
the maximal solution of u’ = -g(t, u), u(T + n) = D(v, 6) to the left exists and is bounded by 
2r(oo) and, by Proposition 2.5, we know the interval of definition of xCn(t) can be extended to 
[t, cm). Moreover, we have 

D (xn(t), 6) 5 27-(m), for t E [T, 00) and for each n. (6) 

To complete the proof of this theorem, we need to show {xn(t)},"=l is equicontinuous. Let E > 0 
and note that by (3), we have 

SW ds, WCQ)) ds < w 
T 

and hence, there exists S E [Z’, co), such that 

Jrn g(s, 2r(co)) ds < E. 
S 
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On the set [T, S+1] x [0, 2r(oo)] the continuous function g(t, u) is bounded by a positive number L. 
Now if Iti - t2] < min(1, s /L) ,  then 

D ( x n ( t l ) , x n ( t 2 ) ) = D ( / 1 2 f ( s , x , ~ ( s ) ) d s ,  5 ) 

<_ / i  2 g (s, D (x.(s), 0)) ds 

However, if tl,  t2 E [S, co), we have 

g( s ,  ds _< g ( s ,  ds  < 

and if tl,  t2 E [T, S + 1], then 

/ i  2 ds Le g(s, 2r(cc)) <_ L[t2 - tl[ < - f f  = ~. 

t oo Thus, {x,(  )}~=1 is equicontinuous. This completes the proof. 

We need to complete the proof of asymptotic equilibrium. If we could conclude that for each 
t e IT, oo) (or, in fact, for any infinite subinterval of [T, oo1) that {x,~(t)}~= 1 is relatively compact, 
we could apply Ascoli-Arzela's theorem (Proposition 2.3). We need the following lemmas before 
we proceed. 

LEMMA 3.1. Suppose the hypotheses of Proposition 2.5 are satisfied. Let v E E n and let 
OQ {xn(~)}n=l be the sequence of fuzzy-valued functions which exist by Theorem 3.1 of this pa- 

per. For each t E IT, oo), let re(t) x oo --- a({ n(t)},~=l ). Then m(t)  is uniformly continuous on 
[T, oo). 
PROOF. Notice that 

t o o  

t o~ < - 

X oo by (vi) of Proposition 2.4. Using the equicontinuity of { , ( t )} ,=  1 and the fact a(A)  <_ 2d, where 
sup~EA D(x, 8) <_ d, the proof is completed. 

LEMMA 3.2. Suppose the hypotheses of Proposition 2.5 are satisfied and f is uniformly continu- 
t oo ous on bounded subsets of IT, oo) x E'L Let {x~( )},~=1 be the sequence of fuzzy-valued functions 

which exist by Theorem 3.1. For s E [T, co) and h > O, we can then express 

x,~(s + h) = xn(s) + hf(s ,  x,~(s)) + hs,~(h) 

and 

where 

xn(s) = x,~(s - h) + hf(s,x,~(s)) + hgn(h), 

l i r a  oo h--*+O ~ ({zn(h)}n=l) = 0 and l i m a  ({g~(h)}~=l) -- 0. 
h--*-l-0 

PROOF. We shall prove the first expression only and the other proof is similar. Let ~ > 0. 
Since f is uniformly continuous on A -- [s, s ÷ 1] × {x e E n I D(x,  ()) < 1}, there exists 6 > 0, 
such that Itl - t~l + D(yl,  Y2) < 5 implies D( f ( t l ,  Yl), f( t2,y2)) < E for (h, yl), (t2,Y2) E A. 
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t oo Since {x,,( )},=1 is equicontinuous, there exists r > 0, such that  for t E (s - r, s + r) we have 
D(x,(t) ,x , , (s))  + I t - s] < 6 for all n. Thus, for h < 5, we know 

D (hs,,(h), O) = D(xn(s + h), x,,(s) + hf(s ,  x~(s))) 

= D f(a,  xn(a))da, f (s ,  xn(s))da 
, 1 8  . 1 8  

s+h  

<_ D(f(a,  xn(cr)),f(s, xn(s)))da 
J 8  

s+h  

<_ e da 
, I s  

= eh. 

Thus, D(s,(h),O) <_ z for each n, which implies that  a({z,,(h)},,~__l) < 2s. Consequently, 
limb--,0 a({en(h)},~_-l) = 0. 

THEOREM 3.2. Suppose the hypotheses of Proposition 2.5 hold and also that 

(i) f is uniformly continuous on bounded subsets of [T, c~) x En; 
(ii) there exists t* e [T, c~), such that m(t*) = 0; 

(iii) G 6 C[[T, cx3) x R+, R+], such that G(t, O) = 0 and the only solution u(t) of u' = C(t, u), 
u(s) = 0 with 

lim u(t) = 0 
t -~s  t - -  S 

is u(t)  - o; 
(iv) for h > 0 and a bounded subset A C E", we have a({x  + hf ( t , x )  I x e A}) - a(A) _ 

ha(t,a(A)). 
T h e n  re( t )  = 0 on It*, ~¢). 

PROOF. Recall tha t  m(t) -- a({x,,(t)},~__l). Now, using Lemma 3.2 and considering h > 0, we 
h a v e  

h oo _ h- l[m(t  + h) - m(t)] = h -1 [a ({xn(t + )}n=L) a ({x,(t)}~=t) ] 

= h -1 [a ({Xn(t) + hf(t ,  x~(t)) + hsn(h)}~n=l) - a ({Xn(t)}n~__t)] 

<__ h -1 [a ({x~(t) + hf(t ,  x,~(t))},~__l) - a  ({xn(t)},~__t) + a ( { h e . ( h ) } ~ = l )  l . 

Now, using (iii) and (v) of Proposition 2.4, we have 

- -1  oo h- l[m(t  + h) - re(t)] < h [hG (t, a ({xn(t)}n=l)) + ha ({Zn(h)}~=l) ] 

= G (t, a ( { X n ( t ) } n ° ° = l ) )  4 -  a ({z.(h)}~=l). 
Hence, applying Lemma 3.2, we obtain D+m(t) < G(t, m(t)). Again, by Proposition 2.2, since 

D+m(t) <_ G(t, re(t)) on [t, c~) and re(t*) = 0, thus, re(t) is less than or equal to the maximal 
solution o f u  t = G(t,u), u(t*) = 0. Using Lemma 3.2, for h > 0, we have 

h- l [x , ( t  * + h)] = h -1 [xn(t*) + hf(t*,xn(t*)) + hen(h)] 

= h -1 [x,(t*) + hf(t*,x,(t*))] + e,(h). 

Thus, 

¢m ~ h c~ 
0 < lim re(t) _ lira a ({Zn(t)},~=l) lim a({z,~(t* + )}-=1) 

t ~ t *  t - -  t*  t -* t*  t - -  ~* h---~+O h 

lira a ({s,, (h) },,¢~=1 ) < lim h -1 [c~({xn(t*) + hf( t*,xn(t*))}~ 1)] + h--,+o 
- -  h - - - + + O  = 

< lim h -1 [hG (t*,a ( { X n ( t * ) } ~ = l ) ) ]  ~- 0 = G (t*, a ({x~(t*)}~=l)) 
h---~+O 

= a ( t * ,  r e ( t * ) )  = a( t* ,  o) = o. 
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Hence, 

lira "~(t----!) = o, 
t -~ t*  t - -  t *  

so by (iii), we have re(t) = 0 for all t E [t*, c¢). By the existence theorem under compactness- 
type conditions (see Theorem 4.1 in [2]), it is easy to see tha t  the fuzzy differential system (3.1) 
has a local solution under the assumptions of Theorem 3.2. Thus,  we have sufficient hypotheses 
to assure local existence, and so the assumption about  local existence in Proposit ion 2.5 is 
superfluous whenever we assume that  the conditions of Theorem 3.2 are satisfied. 

In Theorem 3.2, we assumed the existence of t* E [T, cx3), such tha t  re(t*) = 0. Theorem 3.3 
yields sufficient conditions to assure that  such a t* exists. 

THEOREM 3.3. Suppose the hypotheses of Proposition 2.5 hold and also 

(i) f is uniformly continuous on bounded subsets of [T, co) x E'~; 
(ii) F 6 C[[T, co) x R+, R+] and u' = F(t,  u), u(s) = w has a solution to the left for each 

(s, w) E [T, co) x R+ and for any solution u(t) there exists tl e (T, s], such that u(tl)  = O; 
(iii) for h < 0, a bounded subset of A C E ~ and t e [T, s], we have a ({x  + hf( t ,  x) ] x e 

A}) - a(A) < hF(t, a (d) ) .  

Then there exists a t* e [T, co), such that re(t*) = O. 

PROOF. Recall tha t  re(t) = a({x~(t)}~=l) and, from Lemma 3.1, re(t) is continuous. Now, using 
Lemma 3.2 and considering h > 0, we have 

h - ~ [ m ( t )  - m ( t  - h)]  = h - ~  [~ ( { x ~ ( t ) h % ~ )  - ~ ( { x ~ ( t  - h ) } ~ x ) ]  

= h -1  [a ( { x . ( t ) } ~ = l )  - a ( { x . ( t )  - h f ( t ,  x .~( t ) )  - h g . ( h ) } ° ° = l ) ] .  

Now, by (vi) of Proposit ion 2.4, we have 

h - l i r a ( t )  - -~(t - h)] > h -1  [~ ({x~( t )L~  J 

- a  ({xn(t)  - h f (t, xn(t)  ) }~°°_l ) + c~ ( { - h g n ( h )  }n~=l)] . 

Next, using (vi) and (v) of Proposit ion 2.4, we have 

h -1 Ira(t) - m(t  - h)] >_ h -1 [hF (t, a ({x~(t)}~=l)) + ha  ({g~(h)}n~__l)] 

= F (t, a ({x,~(t)}~__l)) + a ({g~(h)}~=l). 

Thus, 

D_m( t )  = lira h-l[m(t)  - rn(t - h)] 
h--*+O 

> lira F( t ,a ( {xn ( t ) }~=l )  ) + lim a({gn(h)}~__l). 
h ~ + 0  h--~+0 

Since limh-.+0 a({gn(h)}~_l)  = 0, by Lemma 3.2, then D_m( t )  > F(t,  re(t)). From (3.6), we 
have D(xn(t),O) < 2r(oo) on [T, co) for any n, and hence, it follows tha t  re(t) < 4r(oe). For 
s E (T, co), let R(t, s, 4r(oo)) be the maximal solution to the left for u '  = F(t,  u), u(t) = 4r(co). 
The existence of R(t, s, 4r(oe)) on [T, s] follows from (ii). By Proposi t ion 2.2, since D_m(t )  >_ 
F( t ,m( t ) ) ,  we have m(t)  < R(t ,s ,4r(co))  on [T,s]. However, by (ii), there exists t l  e [T, s] 
with R(t l )  = 0, and so there exists t* E [tl,s] with a({x~(t*)}~=l) = m(t*) = 0, which means 
{xn(t*)}~= 1 is relatively compact.  
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THEOREM 3.4. Suppose the hypotheses of Proposition 2.5, Theorems 3.2, and 3.3 are satisfied. 
Then equation (1) has asymptotic equilibrium. 

oo t oo PaOOF. The sequence {xn(t)}~= 1 constructed in Theorem 3.1 has the property that {xn( )}~---1 
is relatively compact for each t E It*, o¢), by Theorems 3.2 and 3.3. Applying Proposition 2.4 
(Ascoli-Arzela's theorem), we know there exists a subsequenee which converges pointwise on 
[t*, c¢) and uniformly on compact subsets of [t*, oo). To simplify the notation, we will use 

t o¢ {x,~( )}~=1 to denote the subsequence. Let x(t) -= limn--.o~ x,~(t) for each t E [t*, c¢) and note 
x(t) is continuous by the uniform convergence on compact subsets. For each t E [t*, oo), we have 

/t x (t) = + 

Since convergence is uniform on compact subsets, it then follows that 

x(t)  = x(t*) + do.. 

Thus, x(t) is a solution of the system x' = f ( t ,  x), x(t*) = z(t*). It remains only to show 
that limt-~oox(t) = v. Let e > 0. Then by (2), there exists an integer S > t*, such that 
f s  g(s, 2r(c¢))ds < e/2. If s E [S, oo), there exists N, such that for all n > N we know 
D(x=(s), x(s)) < ~/2. Consider N + S and recall that XN+s(T + N + S) = v. Thus, 

D(x(s),  v) = D(x(s),  xN+s(T  ÷ N ÷ S)) 

<_ D(x(s),  xN+s(s))  + D(xN+s(s) ,  xN+s(T  + g + S)) 

<_ ~ + O f(a,  XN+S(a)) do., 

E ~s T + N ÷ s  do" < + g (t, D 

<- 2 + Js g(o., 2r(oo)) do. < -~ + g = s, 

and so limt--.oo x(t) = v. This completes the proof. 

4.  L Y A P U N O V  A S Y M P T O T I C  S T A B I L I T Y  

Based on the metric D defined on the fuzzy number space (E n, D), a variety of properties of 
Lyapunov stability in Banach space can be investigated. In the following, we shall first study the 
Lyapunov stability properties of the following fuzzy differential equations: 

x' = A(t)x + f( t ,  x), x(to) = xo, (7) 

where f C C[R+ x E '~, E~], and for each t E R+, A(t) : E n --* E ~ is a semilinear operator that 
has the following properties: 

(i) A(t)(x  + y) = A(t)(x)  + A(t)(y), x, y e E~; 
(ii) A(t)(Ax) = AA(t)(x), A e R+, x E E n. 

Assume the existence of solutions for equation (7) and also assume that A(t) is the contraction 
operator having the following property: there exists a scalar "y with 0 ~ ~/< 1, such that 

D(A(t)x ,  A(t)y) <_ ~'D(x, y), 

for any x, y E E~. Then for each t E R+ and for all h > 0 sufficiently small, the operator 

R[h, A(t)] - I + hA(t) + h2A2(t) + . . .  + h~A'~(t) + . . .  

exists as a bounded operator defined on E ~ and for each x E E n 

lim R[h, A(t)Jx = x. (8) 
h---*0 

It is easy to show that relation (8) can be satisfied. The following comparison theorem is basic 
in the discussion of stability criteria. 
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THEOREM 4.1. Assume that 

(i) V e C[R+ x En, R+] and for (t, xl), (t, x2) e R+ x E n, 

IV(t ,x,)  - V(t, x2)l <_ n(t)D(xl ,x2),  

where L(t) > 0 is continuous on R+; 
(ii) g E C[R+ × R+, R] and for (t, x) E R+ x E n, 

1 
D+V(t,  x) =- hhmo sup ~ [V(t + h, R[h, A(t)]x + hf(t ,  x) ) - V(t, x)] _< g(t, V(t, x)); 

(iii) the maxima/solution r(t, to, u0) of the scalar differential equation 

u' = g(t ,  u) ,   (t0) = u0 _> 0 (9) 

exists on [to, c~). 

Then V(to, Xo) <_ uo implies that 

V(t, x(t, to, xo)) ~ r(t, to, x0), t _~ to. (10) 

PROOF. Let x(t) = x(t, to, xo) be any solution of (1), such that V(to, xo) <_ uo. Define m(t) = 
V(t, x(t, to, xo)). For small h > 0, by (i) we have 

m(t + h) - re(t) <_ L(t + h)D(x(t + h), R[h, A(t)]x(t) + hf(t ,  x(t))) 

+ V(t  + h, R[h, A(t)]x(t) + hf(t ,  x(t))) - V(t, x(t)). 

For every x E E n, from the sense of R[h, A(t)], we know R[h, A(t)] = I + hA(t)R[h, A(t)], so that 

R[h, A(t)]x = x + h(R[h, A(t)]A(t))x. 

It follows that 

Thus, we have 

R[h, A(t)]x + hf(t ,  x) = x + hf(t,  x)) + h(R[h, A(t)]A(t))x. 

mit  + h) - re(t) < Lit + h)Dix(t + h), x(t) + h(Ait)x(t) + f (  t, x(t)))) 

+ L(t + h)hDiR[h, A(t)]A(t)xit), Ait)x(t)) 

+ V i t  + h, R[h, A(t)]x(t) + h f i t ,  xit)) ) - V(t, xit)). 

Hence, by (7),(8) and (ii), we obtain 

< re(t)) .  

By Proposition 2.2, we have the desired estimate (10). For the special case Vit, x) = D(x, 0), we 
have the following corollary. 

COROLLARY 4.1. Let g E C[R+ x R+,R], and for it, x) E R+ x E '~, 

lim 1 (D (R[h,A(t)]x ÷ hfi t ,x) ,O ) - D (x,O)) < g ( t ,D (x,(})). 01)  
h--*O+ -h 

Then D(xo, O) < uo implies 

D (x(t,to,xo),O) <_ rit, to,xo), t >_ to, (12) 

where r(t, to, Xo) is the maximal solution of (9). 
Using the comparison Theorem 4.1, it is easy to prove various stability criteria corresponding 

to the results in Euclidean space. We state a typical result. 
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THEOREM 4.2. In addition to Hypotheses (i) and (ii) of Theorem 4.1, assume that 

(iii) f ( t ,  6) - 0, g(t, O) = O, and V(t, O) - O; 
(iv) b(D(x,O)) <_ V( t ,x)  < a(D(x, O)), (t,x) 6 R+ x E " ,  a,b 6 K,  where K = {¢ 6 C[R+,R+]; 

¢(0) -- 0 and ¢(u) strictly increasing in u}. 

Then any stability property of u = 0 of the scMar differentiM equation (9) implies the corre- 
sponding stability properties of the trivial fuzzy solution of (7). 

EXAMPLE 4.1. Consider the fuzzy differential equation 

1 
x ' =  - -x ,  x(2) x, x0 e E 1, t > 2. (13) tP = xo, _ 

Then for p _> 2, A(t) = (1/tP)I is a semilinear operator as mentioned above. So for sufficient 
small h satisfying 0 < h < 1, we have 

R[h, A(t)] = I + hA(t) + h2d2(t) + . . .  

( h h2 ) 
= l + ~ + t T p + . . .  I 

t p 

--  tP - h  I" 

Here I is an identity operator from E 1 to E 1. We take g(t, u) = u / t  2 and consider the following 
scalar differential equation: 

?2 
u' = -- u(2) = uo > 0. (14) t 2 , 

It is easy to show that the solution u = uoe 1/2-1/t of (14) is asymptotically stable. Using 
the Lyapunov function V(t,  x) = D(x, 0), the assumptions of Theorem 4.2 are satisfied, so the 
solution of fuzzy differential equation (13) is asymptotically stable. 

In fact, from equation (13), we have the following scalar differential equations group: 

1 
x~(t, A) = ~x~( t ,  A), x~(2, A) = x°(A), c~ C {0, 1}, A C [0, 1]. (15) 

It is clear that the solution of (15) is 

Xa(t ,  )~) = xO ()~)e (2(1-m)-t(l-~')l/(p-ll. (16) 

So if D(xo,O) --* O, then by the definition of metric D on fuzzy number space (E~,D),  the 
solution sequence {x°(A)} converges to zero uniformly on parameter A. Thus, the solution se- 
quence {x~(t, A)} of (16) converges to zero uniformly on parameter A as t ~ oc. This implies 
also the asymptotic stability of the fuzzy differential equation (13). 
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