13 research outputs found

    Deceleration and trapping of heavy diatomic molecules using a ring-decelerator

    Full text link
    We present an analysis of the deceleration and trapping of heavy diatomic molecules in low-field seeking states by a moving electric potential. This moving potential is created by a 'ring-decelerator', which consists of a series of ring-shaped electrodes to which oscillating high voltages are applied. Particle trajectory simulations have been used to analyze the deceleration and trapping efficiency for a group of molecules that is of special interest for precision measurements of fundamental discrete symmetries. For the typical case of the SrF molecule in the (N,M) = (2, 0) state, the ring-decelerator is shown to outperform traditional and alternate-gradient Stark decelerators by at least an order of magnitude. If further cooled by a stage of laser cooling, the decelerated molecules allow for a sensitivity gain in a parity violation measurement, compared to a cryogenic molecular beam experiment, of almost two orders of magnitude

    Equivalence between free quantum particles and those in harmonic potentials and its application to instantaneous changes

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedIn quantum physics the free particle and the harmonically trapped particle are arguably the most important systems a physicist needs to know about. It is little known that, mathematically, they are one and the same. This knowledge helps us to understand either from the viewpoint of the other. Here we show that all general time-dependent solutions of the free-particle Schrodinger equation can be mapped to solutions of the Schrodinger equation for harmonic potentials, both the trapping oscillator and the inverted `oscillator'. This map is fully invertible and therefore induces an isomorphism between both types of system, they are equivalent. A composition of the map and its inverse allows us to map from one harmonic oscillator to another with a different spring constant and different center position. The map is independent of the state of the system, consisting only of a coordinate transformation and multiplication by a form factor, and can be chosen such that the state is identical in both systems at one point in time. This transition point in time can be chosen freely, the wave function of the particle evolving in time in one system before the transition point can therefore be linked up smoothly with the wave function for the other system and its future evolution after the transition point. Such a cut-and-paste procedure allows us to describe the instantaneous changes of the environment a particle finds itself in. Transitions from free to trapped systems, between harmonic traps of different spring constants or center positions, or, from harmonic binding to repulsive harmonic potentials are straightforwardly modelled. This includes some time dependent harmonic potentials. The mappings introduced here are computationally more efficient than either state-projection or harmonic oscillator propagator techniques conventionally employed when describing instantaneous (non-adiabatic) changes of a quantum particle's environmentPeer reviewe

    On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH(3Σ^3\Sigma^-) + NH(3Σ^3\Sigma^-)

    Full text link
    We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for which the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important \textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold Quantum Matter - Achievements and Prospects (2011

    Relationship between physical attributes, clay fraction mineralogy and aluminum forms in soil

    Get PDF
    O alumínio (Al) é um dos elementos mais abundantes em massa nos solos brasileiros, estando presente em diferentes minerais e formas. Considerando a carência de informações sobre a sua participação no comportamento físico do solo, buscou-se, no presente estudo, avaliar a relação entre a mineralogia da fração argila, formas de Al e atributos físicos de diferentes solos. Para tanto, foram coletadas amostras deformadas e indeformadas dos horizontes A e B de solos representativos das Zonas Fisiográficas Sul e Campos das Vertentes do estado de Minas Gerais. As amostras foram submetidas às caracterizações física, química e mineralógica. Estudos de correlação mostraram que os atributos físicos dos solos estudados estavam associados às diferentes formas de Al presentes e à mineralogia da fração argila: as formas de Al amorfas e menos cristalinas associaram-se mais aos atributos físicos relacionados com a agregação das partículas do solo, podendo esta associação ser atribuída à afinidade deste elemento com a matéria orgânica, enquanto os componentes cristalinos associaram-se mais aos atributos físicos relacionados com a organização estrutural dos solos._________________________________________________________________________________ ABSTRACT: Aluminum (Al) is one of the most abundant elements in weight in Brazilian soils, found in different minerals and forms. Considering the lack of information about its participation in the physical behavior of soil, the present study aimed to evaluate the relationship between the mineralogy of the clay fraction, different forms of Al and physical attributes of different soils. Disturbed and undisturbed samples of A and B horizons of representative soils from the South and Campos das Vertentes physiographic regions in the State of Minas Gerais were therefore collected. The samples were subjected to physical, chemical and mineralogical characterizations. Correlation studies performed with the resulting data from the different characterizations showed that the physical attributes of the different studied soils are associated to the different forms of Al and to the mineralogy of the clay fraction: the amorphous and less crystalline forms of Al were more associated to physical attributes related with particle aggregation, such association being ascribed to the affinity of this element with organic matter, while the crystalline components were more associated to physical attributes related with the structural organization of the soils

    Cavity cooling of atoms: within and without a cavity

    Get PDF
    We compare the efficiencies of two optical cooling schemes, where a single particle is either inside or outside an optical cavity, under experimentally-realisable conditions. We evaluate the cooling forces using the general solution of a transfer matrix method for a moving scatterer inside a general one-dimensional system composed of immobile optical elements. Assuming the same atomic saturation parameter, we find that the two cooling schemes provide cooling forces and equilibrium temperatures of comparable magnitude
    corecore