455 research outputs found

    Studies of the hydroxylation of cholesterol in endocrine tissues

    Get PDF

    Future variability of solute transport in a macrotidal estuary

    Get PDF
    AbstractThe physical controls on salt distribution and river-sourced conservative solutes, including the potential implications of climate change, are investigated referring to model simulations of a macrotidal estuary. In the UK, such estuaries typically react rapidly to rainfall events and, as such, are often in a state of non-equilibrium in terms of solute transport; hence are particularly sensitive to climate extremes. Sea levels are projected to rise over the 21st century, extending the salinity maximum upstream in estuaries, which will also affect downstream solute transport, promoting estuarine trapping and reducing offshore dispersal of material. Predicted ‘drier summers’ and ‘wetter winters’ in the UK will influence solute transport further still; we found that projected river flow climate changes were more influential than sea-level rise, especially for low flow conditions. Our simulations show that projected climate change for the UK is likely to increase variability in estuarine solute transport and, specifically, increase the likelihood of estuarine trapping during summer, mainly due to drier weather conditions. Future changes in solute transport were less certain during winter, since increased river flow will to some extent counter-act the effects of sea-level rise. Our results have important implications for non-conservative nutrient transport, water quality, coastal management and ecosystem resilience

    Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration

    Get PDF
    Melanised rock-inhabiting fungi are astonishingly resistant to environmental stresses. Also known as micro-colonial fungi (MCF), they are ubiquitous and even colonise bare rocks in deserts. To survive in nutrient poor and extremely stressful conditions, MCF have reduced morphogenetic complexity to a minimum, and rely on a broad spectrum of stress protection mechanisms. Although visual signs of carotenoid presence are masked by heavily melanised black cell-walls, we were able to isolate and characterise a variety of carotenoids (ß-carotene, ζ-carotene, phytoene, torularhodin and torulene) in the rock-inhabiting, relatively fast-growing strain A95. The desiccation/rehydration stress response was used to measure the ability of A95 to adapt to slow or fast changes in external conditions. Revival of MCF after prolonged desiccation and rehydration was documented by biochemical (analyses of lipids and protective pigments), cultivation, and microscopic methods. Survival of MCF is enhanced when desiccation is rapid and mycostasis is instant rather than following prolonged periods of low metabolic activity

    Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI

    Get PDF
    This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-makin

    Fast-timing measurements in neutron-rich odd-mass zirconium isotopes using LaBr3:Ce detectors coupled with Gammasphere

    Get PDF
    A fast-timing experiment was performed at the Argonne National Laboratory to measure the lifetimes of the lowest lying states of nuclei belonging to the deformed regions around mass number A 110 and A 150. These regions were populated via spontaneous fission of 252 Cf and the gamma radiation following the decay of excited states in the fission fragments was measured using 51 Gammasphere detectors coupled with 25 LaBr 3 :Ce detectors. A brief description of the acquisition system and some preliminary results from the fast-timing analysis of the fission fragment 100Zr are presented. The lifetime value of \u3c4 = 840(65) ps was found for the 2 + state in 100 Zr consistent within one standard deviation of the adopted value with 791 +26 -35 ps. This is associated with a quadrupole deformation parameter of 0.36(2) which is within one standard deviation of the literature value of 0.3556 +82 -57

    Fast-timing measurements in the ground-state band of Pd114

    Get PDF
    Using a hybrid Gammasphere array coupled to 25 LaBr3(Ce) detectors, the lifetimes of the first three levels of the yrast band in Pd-114, populated via Cf-252 decay, have been measured. The measured lifetimes are tau(2+) = 103(10) ps, tau(4+) = 22(13) ps, and tau(6+) <= 10 ps for the 2(1)(+), 4(1)(+), and 6(1)(+) levels, respectively. Palladium-114 was predicted to be the most deformed isotope of its isotopic chain, and spectroscopic studies have suggested it might also be a candidate nucleus for low-spin stable triaxiality. From the lifetimes measured in this work, reduced transition probabilities B(E2; J -> J - 2) are calculated and compared with interacting boson model, projected shell model, and collective model calculations from the literature. The experimental ratio R-B(E2) = B(E2; 4(1)(+) -> 2(1)(+))/B(E2; 2(1)(+) -> 0(1)(+)) = 0.80(42) is measured for the first time in Pd-114 and compared with the known values R-B(E2) in the palladium isotopic chain: the systematics suggest that, for N = 68, a transition from gamma-unstable to a more rigid gamma-deformed nuclear shape occurs

    The global atmospheric electrical circuit and climate

    Get PDF
    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescale
    • …
    corecore