22 research outputs found

    On the Total Irregularity Strength of Fan, Wheel, Triangular Book, and Friendship Graphs

    Get PDF
    AbstractA totally irregular total k-labeling λ: V ∪ E → {1, 2, · · ·, k} of a graph G is a total labeling such that G has a total edge irregular labeling and a total vertex irregular labeling at the same time. The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G). In this paper, we investigate some graphs whose total irregularity strength equals to the lower bound

    Insights into the single cell draft genome of "Candidatus Achromatium palustre"

    Get PDF
    "Candidatus Achromatium palustre" was recently described as the first marine representative of the Achromatium spp. in the Thiotrichaceae - a sister lineage to the Chromatiaceae in the Gammaproteobacteria. Achromatium spp. belong to the group of large sulfur bacteria as they can grow to nearly 100 μm in size and store elemental sulfur (S0) intracellularly. As a unique feature, Achromatium spp. can accumulate colloidal calcite (CaCO3) inclusions in great amounts. Currently, both process and function of calcite accumulation in bacteria is unknown, and all Achromatium spp. are uncultured. Recently, three single-cell draft genomes of Achromatium spp. from a brackish mineral spring were published, and here we present the first draft genome of a single "Candidatus Achromatium palustre" cell collected in the sediments of the Sippewissett Salt Marsh, Cape Cod, MA. Our draft dataset consists of 3.6 Mbp, has a G + C content of 38.1 % and is nearly complete (83 %). The next closest relative to the Achromatium spp. genomes is Thiorhodovibrio sp. 907 of the family Chromatiaceae, containing phototrophic sulfide-oxidizing bacteria

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Insights into the single cell draft genome of "<em>Candidatus</em> Achromatium palustre"

    Get PDF
    “Candidatus Achromatium palustre” was recently described as the first marine representative of the Achromatium spp. in the Thiotrichaceae - a sister lineage to the Chromatiaceae in the Gammaproteobacteria. Achromatium spp. belong to the group of large sulfur bacteria as they can grow to nearly 100 μm in size and store elemental sulfur (S0) intracellularly. As a unique feature, Achromatium spp. can accumulate colloidal calcite (CaCO3) inclusions in great amounts. Currently, both process and function of calcite accumulation in bacteria is unknown, and all Achromatium spp. are uncultured. Recently, three single-cell draft genomes of Achromatium spp. from a brackish mineral spring were published, and here we present the first draft genome of a single “Candidatus Achromatium palustre” cell collected in the sediments of the Sippewissett Salt Marsh, Cape Cod, MA. Our draft dataset consists of 3.6 Mbp, has a G + C content of 38.1 % and is nearly complete (83 %). The next closest relative to the Achromatium spp. genomes is Thiorhodovibrio sp. 907 of the family Chromatiaceae, containing phototrophic sulfide-oxidizing bacteria

    Predição do Consumo Voluntário do Capim-Tanzânia (Panicum maximum, J. cv. tanzânia), sob Pastejo, por Vacas em Lactação, a partir das Características de Degradação Prediction of Tanzania Grass (Panicum Maximum, J.) Voluntary Intake, under Grazing by Lactating Cows, from Degradation Characteristics

    No full text
    O consumo de matéria seca (CMS) do capim tanzânia de 24 vacas lactantes mestiças (HPB x Gir) e Gir, sob pastejo, foi estimado no mês de janeiro de 1998, a partir da relação entre a digestibilidade da MS da forragem e a produção fecal obtida com auxílio do cromo mordente por meio de um modelo não-linear. Os resultados do consumo estimado foram comparados aos consumos preditos por diferentes equações baseadas nos dados de degradabilidade do capim, no rúmen. A pastagem foi manejada com taxa de lotação de dois animais/ha, em sistema de pastejo rotativo com três dias de ocupação do piquete e 39 dias de descanso. Foram utilizadas para predizer o CMS diferentes equações: CMS = -1,19 + 0,035 (a+ b) + 28,5c (1), CMS = -0,822 + 0,0748 (a+ b) + 40,7c (2), CMS = -8,286 + 0,266a + 0,102b +17,696c (3) e CMS = [%FDN na MS]* [consumo de FDN ] / [(1-a-b)/K P +b/(c+ k p)]/24] (4). As equações, em geral, subestimaram o consumo obtido no modelo não-linear (9,6 kg/vaca/dia). Os consumos médios de capim de 6,2 e 6,0 kg MS/vaca/dia obtidas, respectivamente, nas equações de (2) e (4) foram semelhantes entre si e inferiores ao das equações de (1) (12,7 kg/vaca/dia) e (3) (8,1 kg/vaca/dia). A predição do consumo de forrageiras tropicais, sob pastejo, utilizando-se as equações baseadas nas variáveis da degradação in situ, constitui um importante potencial para estas avaliações. Entretanto, mais estudos dessa natureza devem ser realizados para validar o uso destas equações na prática.<br>Dry matter intake (DMI) of Tanzania grass under grazing conditions was estimated using 24 Holstein-Zebu and Gir cows from the in vitro dry matter digestibility of extrusa samples (esophageal fistulated cows) and fecal output. The fecal output was estimated using chromium mordant and a non-linear model. The pasture was managed in a rotational system with three days paddock occupation and 39 days of resting period. The stocking rate was 2.0 cows/ha during the rainy season. Four different equations based on in situ degradation characteristics were used to predict DMI: DMI = -1.19 + 0.035 (a+ b) + 28.5c (1), DMI = -0.822 + 0.0748 (a+ b) + 40.7c (2), DMI = -8.286 + 0.266a + 0.102b +17.696c (3) and DMI = [%FDN MS]* [FDN intake] / [(1-a-b)/K P +b/(c+ k p)]/24] (4). The DMI predicted from the equations, in general, underestimated the results obtained with the non-linear model (9.6 kg DM/cow/day). The DMI data using the equations (2) and (4) (6.2 and 6.0 kg of DM/cow/day) were similar and different from the results obtained using equations (1) (12.7 kg DM/cow/day) and (3) (8.1 kg DM/cow/day). All the DMI were underestimated in relation to results from the non-linear model, except those from equation (1). The prediction of tropical forages intake, under grazing condition using equations based in degradation characteristics constitute an important tool for these evaluations. Eventhough, more studies need to be done to validate these equations in practice

    Degradabilidade ruminal e digestibilidade intestinal da proteína de capim-elefante com três idades de corte Rumen degradability and intestinal digestibility of protein of elephant-grass at three cutting ages

    No full text
    Determinaram-se a degradabilidade potencial (DP) e a digestibilidade intestinal da proteína não degradada no rúmen (DIPNDR) do capim-elefante em diferentes idades de rebrote (30, 45 e 60 dias) e comparou-se a técnica do saco de náilon móvel (in situ) com o método de três estádios (in vitro). Para tanto, utilizaram-se seis novilhos mestiços canulados no rúmen e duodeno alimentados exclusivamente com capim-elefante picado. O ensaio de degradabilidade foi realizado com amostras do capim incubadas no rúmen por 3, 6, 9, 12, 24, 48, 72, 96 e 120h. A digestibilidade intestinal foi determinada utilizando-se os resíduos de incubação por 24 horas. Na técnica in situ os resíduos em sacos de náilon foram colocados no duodeno e recuperados nas fezes. No método in vitro, os resíduos foram submetidos à digestão com HCl-pepsina-pancreatina. Em amostras de capim com idades de 30, 45 e 60 dias foram observados valores de DP da proteína de 87,5; 87,8 e 83,8%, respectivamente. A DIPNDR variou com a idade do capim e foi semelhante entre os métodos in situ e in vitro somente para o capim com 60 dias. O método in situ apresentou estimativa de digestibilidade intestinal mais coerente com as mudanças na composição química do capim-elefante decorrentes do envelhecimento.<br>The potential degradability (PD) and intestinal digestibility of ruminal escape protein (IDREP) of elephant-grass at 30, 45, and 60 days of regrowth were determined and the mobile bag technique (in situ) was compared to the three-stage method (in vitro). Thus, six cross-bred steers with rumen and duodenum canulas were used and fed exclusively with chopped elephant grass. The degradability trial was carried out with grass samples incubated in rumen by 3, 6, 9, 12, 24, 48, 72, 96, and 120 h. The intestinal digestibility was determined using 24-h ruminal incubation residue. In the in situ technique, residues in nylon bags were placed in duodenum and recovered in feces. In the in vitro method, residues were digested with solution of HCl-pepsin-pancreatin. In samples of grass at 30, 45, and 60 days of age, the values of protein PD were 87.5, 87.8, and 83.8%, respectively. The IDREP ranged with grass age and it was similar between in situ and in vitro methods only for 60-day old grass. Considering the changes in elephant-grass chemical composition due to aging, the in situ method supplied a more coherent estimative of intestinal digestibility
    corecore