ScienceDirect

On the Total Irregularity Strength of Fan, Wheel, Triangular Book, and Friendship Graphs

Meilin I. Tilukay ${ }^{\text {a, }}$, A. N. M. Salman ${ }^{\text {b }}$, E. R. Persulessy ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Pattimura, Jl. Ir. M. Putuhena, Kampus Poka, Ambon 97233, Indonesia
${ }^{b}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

Abstract

A totally irregular total k-labeling $\lambda: V \cup E \rightarrow\{1,2, \cdots, k\}$ of a graph G is a total labeling such that G has a total edge irregular labeling and a total vertex irregular labeling at the same time. The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by $t s(G)$. In this paper, we investigate some graphs whose total irregularity strength equals to the lower bound. © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Organizing Committee of ICGTIS 2015 Keywords: Edge irregular total labeling, totally irregular total labeling, vertex irregular total labeling. 2010 MSC: 05C78

1. Introduction

Let G be a finite, simple, and undirected graph with the vertex set V and the edge set E. A labeling of a graph is a mapping that sends some set of graph elements to a set of numbers (usually to positive or non-negative integer). If the domain is the vertex-set, or the edge-set, or the union of the vertex-set and the edge-set, the labelings are called, respectively, a vertex labeling, or an edge labeling, or a total labeling.

The corona product of G with H, denoted by $G \odot H$, is a graph obtained by taking one copy of an n-vertex graph G and n copies $H_{1}, H_{2}, \cdots, H_{n}$ of H and then joining the $i^{\text {th }}$ vertex of G to every vertex in H_{i}.
${ }^{[1]}$ Bača et al. introduced an edge irregular total labeling and a vertex irregular total labeling. They determined the total edge irregular strength (tes) and total vertex irregular strength (tvs) of some certain graphs. They proved that for every graph G with the vertex set V and the edge set E,

$$
\begin{equation*}
\left\lceil\frac{|E|+2}{3}\right\rceil \leq \operatorname{tes}(G) \leq|E| . \tag{1}
\end{equation*}
$$

E-mail address: meilin.tilukay@fmipa.unpatti.ac.id

They also determined the total edge irregular strength of a wheel graph W_{n} and a friendship graph F_{n}, respectively as follows:

$$
\begin{align*}
& \operatorname{tes}\left(W_{n}\right)=\left\lceil\frac{2 n+2}{3}\right\rceil \\
& \operatorname{tes}\left(F_{n}\right)=\left\lceil\frac{3 n+2}{3}\right\rceil \tag{2}
\end{align*}
$$

${ }^{[4]}$ Nurdin et al. determined the total edge irregular strength of the corona product of a path with a path, a cycle, and a star as follows:

$$
\begin{align*}
& \operatorname{tes}\left(P_{m} \odot P_{n}\right)=\left\lceil\frac{2 m n+1}{3}\right\rceil \\
& \operatorname{tes}\left(P_{m} \odot C_{n}\right)=\left\lceil\frac{(2 n+1) m+1}{3}\right\rceil \tag{3}\\
& \operatorname{tes}\left(P_{m} \odot S_{n}\right)=\left\lceil\frac{2 m(n+1)}{3}\right\rceil .
\end{align*}
$$

It can be checked that the given labeling did not provide the distinct weight among vertices at the same time. ${ }^{[7]}$ Wijaya and Slamin determined the total vertex irregularity strength of a fan graph f_{n}, a wheel graph W_{n}, and a friendship graph F_{n} as follows:

$$
\begin{align*}
& \operatorname{tvs}\left(f_{n}\right)=\left\lceil\frac{n+2}{4}\right\rceil \\
& \operatorname{tvs}\left(W_{n}\right)=\left\lceil\frac{n+3}{4}\right\rceil \tag{4}\\
& \operatorname{tvs}\left(F_{n}\right)=\left\lceil\frac{2 n+2}{3}\right\rceil .
\end{align*}
$$

For further result of tes and tvs, one can refer ${ }^{[2]}$. ${ }^{[3]}$ Marzuki et al. introduced a new irregular total k-labeling called totally irregular total k-labeling which is the combining of both edge irregular total labeling and vertex irregular total labeling. For a graph G with the vertex-set V and the edge-set E, a totally irregular total k-labeling $\lambda: V \cup E \rightarrow$ $\{1,2, \cdots, k\}$ of G is a total labeling such that for every two distinct edges $x_{1} y_{1}$ and $x_{2} y_{2}$ in $E(G)$ satisfies $w\left(x_{1} y_{1}\right) \neq$ $w\left(x_{2} y_{2}\right)$ and every two distinct vertices x and y in $V(G)$ satisfies $w(x) \neq w(y)$. The minimum k for which G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by $t s(G)$. They proved that for any graph G,

$$
\begin{equation*}
t s(G) \geq \max \{\operatorname{tes}(\mathrm{G}), \operatorname{tvs}(\mathrm{G})\} \tag{5}
\end{equation*}
$$

and determined the $t s$ of a cycle and a path. ${ }^{[5]}$ Ramdani and Salman gave the $t s$ of the cartesian product of P_{2} and a path, a star, a cycle, and a fan graph. ${ }^{[6]}$ Ramdani et al. also estimated the upper bound of $t s$ of any graph and determined the $t s$ of a gear graph, the $t s$ of a fungus graph and the $t s$ of a disjoint union of stars.

In this paper, we investigate some graphs whose total irregularity strength equals to the lower bound. We show that those graphs have totally irregular total k - labeling and determine the exact value of their $t s$.

2. Results

In this section, we determine the total irregularity strength of a fan graph f_{n} for $n \geq 3$, a wheel graph W_{n} for $n \geq 3$, a triangular book graph $P_{1} \odot S_{n}$ for $n \geq 2$, and a friendship graph F_{n} for $n \geq 3$.

2.1. Total irregularity strength of a fan graph

Theorem 1. Let $n \geq 3$ and f_{n} be a fan graph with $n+1$ vertices and $2 n-1$ edges. Then

$$
t s\left(f_{n}\right)=\left\lceil\frac{2 n+1}{3}\right\rceil
$$

Fig. 1. Totally irregular total labeling of: (a) f_{3}; (b) W_{5}; (c) $P_{1} \odot S_{3}$.

Proof. Since $\left|V\left(f_{n}\right)\right|=n+1$ and $\left|E\left(f_{n}\right)\right|=2 n-1$, by (1), (4), and (5), we have $t s\left(f_{n}\right) \geq\left\lceil\frac{2 n+1}{3}\right\rceil$. Let $t=\left\lceil\frac{2 n+1}{3}\right\rceil$. For the reverse inequality, we construct an irregular total labeling $\lambda: V \cup E \rightarrow\{1,2, \cdots, t\}$. Let $V\left(f_{n}\right)=\{v\} \cup\left\{v_{i} \mid 1 \leq i \leq n\right\}$ and $E\left(f_{n}\right)=\left\{v v_{i}, v_{j} v_{j+1} \mid 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$. We divide proof into 4 cases as follows:
Case 1. $n=3$
The result is obvious as shown in Figure 1(a).
Case 2. $n \notin\{3,16,20,21\}$ and $n \neq 9 a+b+25$ for two nonnegative integers a and b, with $0 \leq b \leq 2$
Define λ as follows:

$$
\begin{aligned}
\lambda(v) & =t ; \\
\lambda\left(v_{i}\right) & = \begin{cases}\left\lceil\frac{i}{2}\right\rceil, & \text { for } 1 \leq i \leq t ; \\
t, & \text { for } t+1 \leq i \leq n ;\end{cases} \\
\lambda\left(v v_{i}\right) & = \begin{cases}\left\lceil\frac{i+1}{2}\right\rceil, & \text { for } 1 \leq i \leq t ; \\
i-t+2, & \text { for } t+1 \leq i \leq n ;\end{cases} \\
\lambda\left(v_{i} v_{i+1}\right) & = \begin{cases}1, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{t}-1 ; \\
\left\lceil\frac{t+3}{2}\right\rceil, & \text { for } i=t ; \\
n-2 t+2+i, & \text { for } t+1 \leq i \leq n-1 .\end{cases}
\end{aligned}
$$

It is easy to check that the largest label is t.
Next, we have

$$
\begin{aligned}
w\left(v v_{i}\right) & = \begin{cases}t+\left\lceil\frac{i}{2}\right\rceil+\left\lceil\frac{i+1}{2}\right\rceil, & \text { for } 1 \leq i \leq t ; \\
t+2+i, & \text { for } t+1 \leq i \leq n ;\end{cases} \\
w\left(v_{i} v_{i+1}\right) & = \begin{cases}\left\lceil\frac{i}{2}\right\rceil+\left\lceil\frac{i+1}{2}\right\rceil+1, & \text { for } 1 \leq i \leq t-1 ; \\
t+1+\left\lceil\frac{t}{2}\right\rceil+\left\lceil\frac{t+1}{2}\right\rceil, & \text { for } i=t ; \\
n+2+i, & \text { for } t+1 \leq i \leq n-1 ;\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& w(v)= \begin{cases}\frac{1}{2} n(n+5-2 t)+\frac{1}{4} t(3 t-2), & \text { for even } t ; \\
\frac{1}{2} n(n+5-2 t)+\frac{1}{4} t(3 t-2)+\frac{1}{4}, & \text { for odd } t ;\end{cases} \\
& w\left(v_{i}\right)= \begin{cases}3, & \text { for } i=1 ; \\
{\left[\frac{i}{2}\right\rceil+\left\lceil\frac{i+1}{2}\right\rceil+2,} & \text { for } 2 \leq i \leq t-1 ; \\
\left.\frac{t}{t}\right\rceil+t+3, & \text { for } i=t ; \\
\left.\left\lvert\, \frac{t+1}{2}\right.\right\rceil+n+7, & \text { for } i=t+1 ; \\
2 n-4 t+5+3 i, & \text { for } t+2 \leq i \leq n-1 ; \\
3 n-2 t+3 & \text { for } i=n .\end{cases}
\end{aligned}
$$

It can be checked that the edge-weights under λ form a consecutive sequence $3,4, \cdots, 2 n+1$ and the vertex-weights $w\left(v_{i}\right)$ for $1 \leq i \leq n-1$ are pairwise distinct because of:

$$
\begin{aligned}
\left\{w\left(v_{1}\right)\right\} & =\{3\} ; \\
\left\{w\left(v_{i}\right) \mid 2 \leq i \leq t-1\right\} & =\{5,6, \cdots, t+2\} ; \\
\left\{w\left(v_{t}\right)\right\} & =\left\{\left\lceil\frac{t}{2}\right\rceil+t+3\right\} ; \\
\left\{w\left(v_{t+1}\right)\right\} & =\left\{\left[\frac{t+1}{2}\right\rceil+n+7\right\} ; \\
\left\{w\left(v_{i}\right) \mid t+2 \leq i \leq n-1\right\} & =\{2 n-t+11,2 n-t+14, \cdots, 5 n-4 t+2\} .
\end{aligned}
$$

Next, we verify $w(v) \neq w\left(v_{i}\right), w(v) \neq w\left(v_{n}\right)$, and $w\left(v_{i}\right) \neq w\left(v_{n}\right)$. Consider that whenever n is increase, the weight of v is strictly increase. Hence, just by checking on the lowest value of n, we have $w(v)>w\left(v_{n-1}\right)$ and $w(v)>w\left(v_{n}\right)$. Suppose that $w\left(v_{i}\right)=w\left(v_{n}\right)$. Then $n=\frac{1}{2}\left\lceil\frac{t+1}{2}\right\rceil+t+2$ or $n=3 i-2 t+2$ for $t+2 \leq i \leq n-1$. It can be checked that all integers n which satisfied this condition are $n \in\{16,20,21\}$ or $n=9 a+b+25$ for two nonnegative integer a and b, where $0 \leq b \leq 2$. Thus, the vertex-weights are pairwise distinct.
Case 3. $n \in\{16,20,21\}$
By applying λ, we have $w\left(v_{t+1}\right)=w\left(v_{n}\right)$. Hence, we modified λ by defining a new labeling λ^{\prime} where $\lambda^{\prime}\left(v_{t+1} v_{t+2}\right)=$ $\lambda\left(v v_{t+2}\right)$ and $\lambda^{\prime}\left(v v_{t+2}\right)=\lambda\left(v_{t+1} v_{t+2}\right)$. We have $w\left(v_{t+1}\right)=\left\lceil\frac{t+1}{2}\right\rceil+t+8$. It can be checked that the modification just change $w\left(v_{t+1}\right)$. Thus, the vertex-weights (and the edge-weights) are pairwise distinct.
Case 4. $n=9 a+b+25$ for two nonnegative integers a and b, with $0 \leq b \leq 2$,
By applying λ, we have $w\left(v_{t+2+a}\right)=w\left(v_{n}\right)$. Hence, we modified with $\lambda^{\prime}\left(v_{t+2+a} v_{t+3+a}\right)=\lambda\left(v v_{t+3+a}\right)$ and $\lambda^{\prime}\left(v v_{t+3+a}\right)=$ $\lambda\left(v_{t+2+a} v_{t+3+a}\right)$. We have $w\left(v_{t+2+a}\right)=n+3 a+12$. It can be checked that the modification just change $w\left(v_{t+1}\right)$. Thus, the vertex-weights (and the edge-weights) are pairwise distinct. It complete the proof.

2.2. Total irregularity strength of a wheel graph

Theorem 2. Let $n \geq 3$ and W_{n} be a wheel graph with $n+1$ vertices and $2 n$ edges. Then

$$
t s\left(W_{n}\right)=\left\lceil\frac{2 n+2}{3}\right\rceil .
$$

Proof. Since $\left|V\left(W_{n}\right)\right|=n+1$ and $\left|E\left(W_{n}\right)\right|=2 n$, by (2), (4), and (5), we have $t s\left(W_{n}\right) \geq\left\lceil\frac{2 n+2}{3}\right\rceil$. Let $t=\left\lceil\frac{2 n+2}{3}\right\rceil$. For the reverse inequality, we construct a total labeling $\lambda: V \cup E \rightarrow\{1,2, \cdots, t\}$. Let $V\left(W_{n}\right)=\{v\} \cup\left\{v_{i} \mid 1 \leq i \leq n\right\}$ and $E\left(W_{n}\right)=\left\{v v_{i}, v_{j} v_{j+1}, v_{n} v_{1} \mid 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$. We divide proof into 2 cases as follows:
Case 1. $n=5$
The result is obvious as shown in Figure 1(b).
Case 2. $n \neq 5$
Define λ as follows:

$$
\begin{array}{rlrl}
\lambda(v) & =t-1 ; \\
\lambda\left(v_{i}\right) & = \begin{cases}{\left[\frac{i}{2}\right\rceil,} \\
t, & \text { for } 1 \leq i \leq t-1 ;\end{cases} \\
\lambda\left(v v_{i}\right) & = \begin{cases}{\left[\frac{i+1}{2}\right\rceil,} & \text { for } t \leq i \leq n ; \\
i-t+3,\end{cases} \\
\lambda\left(v_{n} v_{1}\right) & =t-1 ; & \text { for } t \leq i \leq t-1 ;
\end{array},\left\{\begin{array}{ll}
1, & \text { for } 1 \leq i \leq t-2 ;
\end{array}\right\}\left(v_{i} v_{i+1}\right)= \begin{cases}{\left[\frac{t}{2}\right\rceil+1,} & \text { for } i=t-1 ; \\
n-2 t+3+i, & \text { for } t \leq i \leq n-1 .\end{cases}
$$

It is easy to check that the largest label is t.
Next, we have

$$
\begin{aligned}
w\left(v v_{i}\right) & = \begin{cases}t+i, & \text { for } 1 \leq i \leq t-1 \\
t+2+i, & \text { for } t \leq i \leq n\end{cases} \\
w\left(v_{i} v_{i+1}\right) & = \begin{cases}i+2, & \text { for } 1 \leq i \leq t-2 \\
2 t+1, & \text { for } i=t-1 \\
n+3+i, & \text { for } t \leq i \leq n-1\end{cases} \\
w\left(v_{n} v_{1}\right) & =2 t ;
\end{aligned}
$$

and

$$
\begin{aligned}
& w(v)= \begin{cases}\frac{1}{2} n(n+7-2 t)+\frac{1}{4} t(3 t-6)-1, & \text { for even } t \\
\frac{1}{2} n(n+7-2 t)+\frac{1}{4} t(3 t-6)-\frac{5}{4}, & \text { for odd } t\end{cases} \\
& w\left(v_{i}\right)= \begin{cases}t+2 & \text { for } i=1 \\
i+3, & \text { for } 2 \leq i \leq t-2 \\
\left\lceil\frac{t}{2}\right]+t+2, & \text { for } i=t-1 \\
\left.\frac{t}{2}\right\rceil+n+7, & \text { for } i=t ; \\
2 n-4 t+3 i+8, & \text { for } t+1 \leq i \leq n-1 \\
3 n-t+4 & \text { for } i=n\end{cases}
\end{aligned}
$$

It can be checked that the edge-weights under λ form a consecutive sequence $3,4, \cdots, 2 n+2$ and the vertex-weigths $w\left(v_{i}\right)$ for $1 \leq i \leq n-1$ are pairwise distinct because of:

$$
\begin{aligned}
\left\{w\left(v_{1}\right)\right\} & =\{t+2\} \\
\left\{w\left(v_{i}\right) \mid 2 \leq i \leq t-2\right\} & =\{5,6, \cdots, t+1\} \\
\left\{w\left(v_{t-1}\right)\right\} & =\left\{\left\lceil\frac{t}{2}\right\rceil+t+2\right\} \\
\left\{w\left(v_{t}\right)\right\} & =\left\{\left[\frac{t}{2}\right\rceil+n+7\right\} ; \\
\left\{w\left(v_{i}\right) \mid t+1 \leq i \leq n-1\right\} & =\{2 n-t+11,2 n-t+14, \cdots, 5 n-4 t+5\}
\end{aligned}
$$

Next, we verify $w(v) \neq w\left(v_{i}\right), w(v) \neq w\left(v_{n}\right)$, and $w\left(v_{i}\right) \neq w\left(v_{n}\right)$. It is easy to check on $n<5$. For $n>5$, we consider that whenever n is increase, the weight of v is strictly increase. Hence, just by checking on the lowest value $n=6$, we have $w(v)>w\left(v_{n-1}\right)$ and $w(v)>w\left(v_{n}\right)$. Since $w\left(v_{n}\right)>w\left(v_{i}\right)$, for $i \leq t$, we suppose that $w\left(v_{n}\right)=w\left(v_{i}\right)$, for $t+1 \leq i \leq n-1$, then $3 i=n+3 t-4$. There is no integer n which satisfy this condition. Thus, the vertex-weights are pairwise distinct. It complete the proof.

2.3. Total irregularity strength of a triangular book graph

Theorem 3. Let $n \geq 3$ and $P_{1} \odot S_{n}$ be a book graph with n triangular pages with $n+1$ vertices and $2 n-1$ edges. Then

$$
t s\left(P_{1} \odot S_{n}\right)=\left\lceil\frac{2 n+3}{3}\right\rceil
$$

Proof. Since $\left|V\left(P_{1} \odot S_{n}\right)\right|=n+2$ and $\left|E\left(P_{1} \odot S_{n}\right)\right|=2 n+1$, by (1), (3), and (5), we have $t s\left(P_{1} \odot S_{n}\right) \geq\left\lceil\frac{2 n+3}{3}\right\rceil$. Let $t=\left\lceil\frac{2 n+3}{3}\right\rceil$. For the reverse inequality, we construct an irregular total labeling $\lambda: V \cup E \rightarrow\{1,2, \cdots, t\}$.
Let $V\left(P_{1} \odot S_{n}\right)=\left\{u, v, v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $E\left(P_{1} \odot S_{n}\right)=\left\{u v, u v_{i}, v v_{i} \mid 1 \leq i \leq n\right\}$. Let $n \equiv m \bmod 3$ for $m=0,1,2$. We divide proof into 2 cases as follows:
Case 1. $n=3$
The result is obvious as shown in Figure 1(c).

Case 2. $n \neq 3$
Define λ as follows:

$$
\begin{aligned}
\lambda(u) & =1 ; \\
\lambda(v) & =t ; \\
\lambda\left(v_{i}\right) & = \begin{cases}i, & \text { for } 1 \leq i \leq t ; \\
t, & \text { for } t+1 \leq i \leq n\end{cases} \\
\lambda(u v) & =t ; \\
\lambda\left(u v_{i}\right) & = \begin{cases}1, & \text { for } 1 \leq i \leq t \\
i-t+1, & \text { for } t+1 \leq i \leq n\end{cases} \\
\lambda\left(v v_{i}\right) & = \begin{cases}n-t+2, & \text { for } 1 \leq i \leq \frac{1}{2}(t+m-1) \\
n-t+3, & \text { for } \frac{1}{2}(t+m+1) \leq i \leq t \\
n-2 t+3+i, & \text { for } t+1 \leq i \leq n\end{cases}
\end{aligned}
$$

It is easy to check that the largest label is t.
Next, we have

$$
\begin{array}{rlrl}
w(u v) & =2 t+1 ; & & \text { for } 1 \leq i \leq n \\
w\left(u v_{i}\right) & =i+2, & \text { for } 1 \leq i \leq \frac{1}{2}(t+m-1) \\
w\left(v v_{i}\right) & = \begin{cases}n+2+i, & \text { for } \frac{1}{2}(t+m+1) \leq i \leq n \\
n+3+i, & \end{cases}
\end{array}
$$

and

$$
\begin{aligned}
& w(u)=\frac{1}{2} n(n-2 t+3)+\frac{1}{2} t(t+1)+1 \\
& w(v)=\frac{1}{2} n(3 n-4 t+7)+\frac{1}{2} t(t+2)-\frac{1}{2}(m-1) \\
& w\left(v_{i}\right)= \begin{cases}n-t+3+i & \text { for } 1 \leq i \leq \frac{1}{2}(t+m-1) \\
n-t+4+i, & \text { for } \frac{1}{2}(t+m+1) \leq i \leq t \\
n-2 t+4+2 i & \text { for } t+1 \leq i \leq n\end{cases}
\end{aligned}
$$

It can be checked that the edge- weights under λ form a consecutive sequence $3,4, \cdots, 2 n+3$ and the vertex-weights $w\left(v_{i}\right)$ for $1 \leq i \leq n$ are pairwise distinct because of:

$$
\begin{aligned}
\left\{w\left(v_{i}\right) \left\lvert\, 1 \leq i \leq \frac{1}{2}(t+m-1)\right.\right\} & =\left\{n-t+4, n-t+5, \cdots, \frac{1}{2}(t+m-1)+n-t+3\right\} \\
\left\{w\left(v_{i}\right) \left\lvert\, \frac{1}{2}(t+m+1) \leq i \leq t\right.\right\} & =\left\{\frac{1}{2}(t+m-1)+n-t+5, \frac{1}{2}(t+m-1)+n-t+6, \cdots, n+4\right\} \\
\left\{w\left(v_{i}\right) \mid t+1 \leq i \leq n\right\} & =\{n+6, n+8, \cdots, 3 n-2 t+4\}
\end{aligned}
$$

Next, since $w(u)<w(v)$, we verify $w(u) \neq w\left(v_{n}\right)$. Since the weight of u is strictly increase whenever n is increase,we check on the lowest value $n=4$, we have $w(u)>w\left(v_{n}\right)$. Thus, the vertex-weights are pairwise distinct. It complete the proof.

2.4. Total irregularity strength of a friendship graph

A friendship graph F_{n} is a set of n-copies of a triangle whose a common vertex as a center and the other mutually disjoint vertices. For the $i^{t h}$ triangle, let v be the center and the other two vertices as x_{i} and y_{i}, respectively.

Theorem 4. Let $n \geq 2$ and F_{n} be a friendship graph with $2 n+1$ vertices and $3 n$ edges. Then

$$
t s\left(F_{n}\right)=n+1 .
$$

Proof. Let $V\left(F_{n}\right)=\left\{v, x_{i}, y_{i} \mid 1 \leq i \leq n\right\}$ and $E\left(F_{n}\right)=\left\{v x_{i}, v y_{i}, x_{i} y_{i} \mid 1 \leq i \leq n\right.$. By (2), (4) and (5), $t s\left(F_{n}\right) \geq\left\lceil\frac{3 n+2}{3}\right\rceil$. Let $t=\left\lceil\frac{3 n+2}{3}\right\rceil$ and $r=\left\lfloor\frac{n-1}{2}\right\rfloor$. For the reverse inequality, we divide all triangles into 3 different part, say r first triangles $v x_{i_{1}} y_{i_{1}} v$, triangle $v x_{r+1} y_{r+1} v$, and $n-r-1$ triangles $v x_{i_{2}} y_{i_{2}} v$, where $i=1,2, \cdots, s$. We construct an irregular total labeling $\lambda: V \cup E \rightarrow\{1,2, \cdots, t\}$ of F_{n} as follows:

$$
\begin{aligned}
& \lambda(v)=r+1 ; \\
& \lambda\left(x_{i_{1}}\right)=1, \\
& \lambda\left(y_{i_{1}}\right)=1, \\
& \lambda\left(x_{r+1}\right)=r+1 ; \\
& \lambda\left(y_{r+1}\right)=r+1 ; \\
& \lambda\left(x_{i_{2}}\right)=t, \\
& \lambda\left(y_{i_{2}}\right)=t, \\
& \lambda\left(x_{i_{1}} y_{i_{1}}\right)=i, \\
& \lambda\left(v x_{i_{1}}\right)=2 i-1, \\
& \lambda\left(v y_{i_{1}}\right)=2 i, \\
& \lambda\left(x_{r+1} y_{r+1}\right)=r+1 ; \\
& \lambda\left(v x_{r+1}\right)=r+2 ; \\
& \lambda\left(v y_{r+1}\right)=r+3 ; \\
& \lambda\left(x_{i_{2}} y_{i_{2}}\right)=r+i+1, \\
& \lambda\left(v x_{i_{2}}\right)=\left\{\begin{array}{l}
2 i, \\
2 i+1,
\end{array}\right. \\
& \lambda\left(v y_{i_{2}}\right)=\left\{\begin{array}{l}
2 i+1, \\
2 i+2,
\end{array}\right. \\
& \text { for } 1 \leq i \leq r \text {; } \\
& \text { for } 1 \leq i \leq r \text {; } \\
& \text { for } 1 \leq i \leq n-r-1 \text {; } \\
& \text { for } 1 \leq i \leq n-r-1 \text {; } \\
& \text { for } 1 \leq i \leq r \text {; } \\
& \text { for } 1 \leq i \leq r \text {; } \\
& \text { for } 1 \leq i \leq r \text {; } \\
& \text { for } 1 \leq i \leq n-r-1 \text {; } \\
& \text { for even } n \text { with } 1 \leq i \leq n-r-1 \text {; } \\
& \text { for odd } n \text { with } 1 \leq i \leq n-r-1 \text {; } \\
& \text { for even } n \text { with } 1 \leq i \leq n-r-1 \text {; } \\
& \text { for odd } n \text { with } 1 \leq i \leq n-r-1 \text {. }
\end{aligned}
$$

It is easy to check that the largest label is t.
Next, we have

$$
\begin{aligned}
& w\left(x_{i_{1}} y_{i_{1}}\right)=i+2, \quad \text { for } 1 \leq i \leq r ; \\
& w\left(v x_{i_{1}}\right)=r+2 i+1, \quad \text { for } 1 \leq i \leq r ; \\
& w\left(v y_{i_{1}}\right)=r+2 i+2, \quad \text { for } 1 \leq i \leq r ; \\
& w\left(x_{r+1} y_{r+1}\right)=3 r+3 \text {; } \\
& w\left(v x_{r+1}\right)=3 r+4 ; \\
& w\left(v y_{r+1}\right)=3 r+5 \text {; } \\
& w\left(x_{i_{2}} y_{i_{2}}\right)=2 t+r+i+1, \quad \text { for } 1 \leq i \leq n-r-1 ; \\
& w\left(v x_{i_{2}}\right)= \begin{cases}r+t+2 i+1, & \text { for even } n \text { with } 1 \leq i \leq n-r-1 ; \\
r+t+2 i+2, & \text { for odd } n \text { with } 1 \leq i \leq n-r-1, ;\end{cases} \\
& w\left(v y_{i_{2}}\right)= \begin{cases}r+t+2 i+2, & \text { for even } n \text { with } 1 \leq i \leq n-r-1 ; \\
r+t+2 i+3, & \text { for odd } n \text { with } 1 \leq i \leq n-r-1 ;\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& w(v)= \begin{cases}4 r(r+1)+n(2 n-4 r-1)+4, & \text { for even } n ; \\
4 r(r+1)+n(2 n-4 r+1)+2, & \text { for odd } n ;\end{cases} \\
& w\left(x_{i_{1}}\right)=3 i, \\
& w\left(y_{i_{1}}\right)=3 i+1, \\
& w\left(x_{r+1}\right)=3 r+4 ; \\
& w\left(y_{r+1}\right)=3 r+5 ; \\
& w\left(x_{i_{2}}\right)= \begin{cases}t+r+3 i+1, & \text { for } 1 \leq i \leq r ; \\
t+r+3 i+2, & \text { for even } n \text { with } 1 \leq i \leq n-r-1 ;\end{cases} \\
& w\left(y_{i_{2}}\right)= \begin{cases}t+r+3 i+2, & \text { for odd } n \text { with } 1 \leq i \leq n-r-1 ; \\
t+r+3 i+3, & \text { for even } n \text { with } 1 \leq i \leq n-r-1 ;\end{cases} \\
& w n \text { with } 1 \leq i \leq n-r-1 .
\end{aligned}
$$

It can be checked that the edge-weights under λ form a consecutive sequence $3,4, \cdots, 2 n+2$.
For even n, we have

$$
\begin{aligned}
\{w(v)\} & =\{4 r(r+1)+n(2 n-4 r-1)+4\} ; \\
\left\{w\left(x_{i_{1}}\right) \mid 1 \leq i \leq r\right\} & =\{3,6, \cdots, 3 r\} ; \\
\left\{w\left(y_{i_{1}}\right) \mid 1 \leq i \leq r\right\} & =\{4,7, \cdots, 3 r+1\} ; \\
\left\{w\left(x_{r+1}\right)\right\} & =\{3 r+4\} ; \\
\left\{w\left(y_{r+1}\right)\right\} & =\{3 r+5\} ; \\
\left\{w\left(x_{i_{2}}\right) \mid 1 \leq i \leq n-r-1\right\} & =\{t+r+4, t+r+7, \cdots, 3 n+t-2 r-2\} ; \\
\left\{w\left(y_{i_{2}}\right) \mid 1 \leq i \leq n-r-1\right\} & =\{t+r+5, t+r+8, \cdots, 3 n+t-2 r-1\} .
\end{aligned}
$$

Next, we verify $w(v) \neq w\left(y_{i_{2}}\right)$. Since the weight of v is strictly increase whenever n is increase, we check on the lowest value $n=2$, we have $w(v)>w\left(y_{n-r-1}\right)$. Thus, the vertex-weights are pairwise distinct. It is similar for odd n. It complete the proof.

References

1. Bača M, Jendrol' S, Miller M, Ryan J. On irregular total labelings. Discrete Mathematics 2007;307:1378-1388.
2. Galian JA. A dynamic survey of graph labeling. Electronic Journal of Combinatorics 2014;18:\# DS6.
3. Marzuki CC, Salman ANM, Miller M. On the total irregularity strengths of cycles and paths. Far East J. Math. Sci. 2013;82(1):1-21.
4. Nurdin, Salman ANM, Baskoro ET. The total edge irregular strengths of the corona product of paths with some graphs. Journal of Combinatorial Mathematics and Combinatorial Computing 2009;71:227-233.
5. Ramdani R, Salman ANM. On the total irregularity strength of some cartesian product graphs. AKCE Int. J. Graphs Comb. 2013;10(2):199-209.
6. Ramdani R, Salman ANM, Assiyatun H, Semaničovǎ-Feňovčikovǎ A, Bača M. Total irregularity strength of three families of graphs. Math.Comput.Sci. 2015;9:229-237.
7. Wijaya K, Slamin. Total vertex irregular labelings of wheels, fans, suns, and friendship graphs. Journal of Combinatorial Mathematics and Combinatorial Computing 2008;56:103-112.
