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Abstract

A totally irregular total k-labeling λ : V ∪ E → {1, 2, · · · , k} of a graph G is a total labeling such that G has a total edge irregular

labeling and a total vertex irregular labeling at the same time. The minimum k for which a graph G has a totally irregular total

k-labeling is called the total irregularity strength of G, denoted by ts(G). In this paper, we investigate some graphs whose total

irregularity strength equals to the lower bound.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Organizing Committee of ICGTIS 2015.

Keywords: Edge irregular total labeling, totally irregular total labeling, vertex irregular total labeling.

2010 MSC: 05C78

1. Introduction

Let G be a finite, simple, and undirected graph with the vertex set V and the edge set E. A labeling of a graph is

a mapping that sends some set of graph elements to a set of numbers (usually to positive or non-negative integer). If

the domain is the vertex-set, or the edge-set, or the union of the vertex-set and the edge-set, the labelings are called,

respectively, a vertex labeling, or an edge labeling, or a total labeling.

The corona product of G with H, denoted by G � H, is a graph obtained by taking one copy of an n-vertex graph

G and n copies H1,H2, · · · ,Hn of H and then joining the ith vertex of G to every vertex in Hi.
[1]Bača et al. introduced an edge irregular total labeling and a vertex irregular total labeling. They determined the

total edge irregular strength (tes) and total vertex irregular strength (tvs) of some certain graphs. They proved that for

every graph G with the vertex set V and the edge set E,

⌈ |E| + 2

3

⌉
≤ tes(G) ≤ |E|. (1)
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They also determined the total edge irregular strength of a wheel graph Wn and a friendship graph Fn, respectively as

follows:

tes(Wn) =
⌈2n + 2

3

⌉
;

tes(Fn) =
⌈3n + 2

3

⌉
.

(2)

[4]Nurdin et al. determined the total edge irregular strength of the corona product of a path with a path, a cycle, and

a star as follows:

tes(Pm � Pn) =
⌈2mn + 1

3

⌉
;

tes(Pm �Cn) =
⌈ (2n + 1)m + 1

3

⌉
;

tes(Pm � S n) =
⌈2m(n + 1)

3

⌉
.

(3)

It can be checked that the given labeling did not provide the distinct weight among vertices at the same time. [7]Wijaya

and Slamin determined the total vertex irregularity strength of a fan graph fn, a wheel graph Wn, and a friendship graph

Fn as follows:

tvs( fn) =
⌈n + 2

4

⌉
;

tvs(Wn) =
⌈n + 3

4

⌉
;

tvs(Fn) =
⌈2n + 2

3

⌉
.

(4)

For further result of tes and tvs , one can refer [2]. [3]Marzuki et al. introduced a new irregular total k-labeling called

totally irregular total k-labeling which is the combining of both edge irregular total labeling and vertex irregular total

labeling. For a graph G with the vertex-set V and the edge-set E, a totally irregular total k-labeling λ : V ∪ E →
{1, 2, · · · , k} of G is a total labeling such that for every two distinct edges x1y1 and x2y2 in E(G) satisfies w(x1y1) �
w(x2y2) and every two distinct vertices x and y in V(G) satisfies w(x) � w(y). The minimum k for which G has a

totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G). They proved that for

any graph G,

ts(G) ≥ max{tes(G), tvs(G)}; (5)

and determined the ts of a cycle and a path. [5]Ramdani and Salman gave the ts of the cartesian product of P2 and

a path, a star, a cycle, and a fan graph. [6]Ramdani et al. also estimated the upper bound of ts of any graph and

determined the ts of a gear graph, the ts of a fungus graph and the ts of a disjoint union of stars.

In this paper, we investigate some graphs whose total irregularity strength equals to the lower bound. We show that

those graphs have totally irregular total k- labeling and determine the exact value of their ts.

2. Results

In this section, we determine the total irregularity strength of a fan graph fn for n ≥ 3, a wheel graph Wn for n ≥ 3,

a triangular book graph P1 � S n for n ≥ 2, and a friendship graph Fn for n ≥ 3 .

2.1. Total irregularity strength of a fan graph

Theorem 1. Let n ≥ 3 and fn be a fan graph with n + 1 vertices and 2n − 1 edges. Then

ts( fn) =

⌈
2n + 1

3

⌉
.
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Fig. 1. Totally irregular total labeling of: (a) f3; (b) W5; (c) P1 � S 3.

Proof. Since |V( fn)| = n + 1 and |E( fn)| = 2n − 1, by (1), (4), and (5), we have ts( fn) ≥
⌈

2n+1
3

⌉
. Let t =

⌈
2n+1

3

⌉
. For the

reverse inequality, we construct an irregular total labeling λ : V ∪ E → {1, 2, · · · , t}. Let V( fn) = {v} ∪ {vi|1 ≤ i ≤ n}
and E( fn) = {vvi, v jv j+1|1 ≤ i ≤ n, 1 ≤ j ≤ n − 1}. We divide proof into 4 cases as follows:

Case 1. n = 3

The result is obvious as shown in Figure 1(a).

Case 2. n � {3, 16, 20, 21} and n � 9a + b + 25 for two nonnegative integers a and b, with 0 ≤ b ≤ 2

Define λ as follows:

λ(v) = t;

λ(vi) =

{ ⌈ i
2

⌉
, for 1 ≤ i ≤ t;

t, for t + 1 ≤ i ≤ n;

λ(vvi) =

{ ⌈ i+1
2

⌉
, for 1 ≤ i ≤ t;

i − t + 2, for t + 1 ≤ i ≤ n;

λ(vivi+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, for 1 ≤ i ≤ t − 1;⌈

t+3
2

⌉
, for i = t;

n − 2t + 2 + i, for t + 1 ≤ i ≤ n − 1.

It is easy to check that the largest label is t.
Next, we have

w(vvi) =

{
t +
⌈

i
2

⌉
+
⌈

i+1
2

⌉
, for 1 ≤ i ≤ t;

t + 2 + i, for t + 1 ≤ i ≤ n;

w(vivi+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌈
i
2

⌉
+
⌈

i+1
2

⌉
+ 1, for 1 ≤ i ≤ t − 1;

t + 1 +
⌈

t
2

⌉
+
⌈

t+1
2

⌉
, for i = t;

n + 2 + i, for t + 1 ≤ i ≤ n − 1;

and

w(v) =

{
1
2
n(n + 5 − 2t) + 1

4
t(3t − 2), for even t;

1
2
n(n + 5 − 2t) + 1

4
t(3t − 2) + 1

4
, for odd t;

w(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3, for i = 1;⌈
i
2

⌉
+
⌈

i+1
2

⌉
+ 2, for 2 ≤ i ≤ t − 1;⌈

t
2

⌉
+ t + 3, for i = t;⌈

t+1
2

⌉
+ n + 7, for i = t + 1;

2n − 4t + 5 + 3i, for t + 2 ≤ i ≤ n − 1;

3n − 2t + 3 for i = n.
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It can be checked that the edge-weights under λ form a consecutive sequence 3, 4, · · · , 2n + 1 and the vertex-weights

w(vi) for 1 ≤ i ≤ n − 1 are pairwise distinct because of:

{w(v1)} = {3};
{w(vi) | 2 ≤ i ≤ t − 1} = {5, 6, · · · , t + 2};

{w(vt)} =
{⌈ t

2

⌉
+ t + 3

}
;

{w(vt+1)} =
{⌈

t + 1

2

⌉
+ n + 7

}
;

{w(vi) | t + 2 ≤ i ≤ n − 1} = {2n − t + 11, 2n − t + 14, · · · , 5n − 4t + 2}.

Next, we verify w(v) � w(vi),w(v) � w(vn), and w(vi) � w(vn). Consider that whenever n is increase, the weight of

v is strictly increase. Hence, just by checking on the lowest value of n, we have w(v) > w(vn−1) and w(v) > w(vn).

Suppose that w(vi) = w(vn). Then n = 1
2

⌈
t+1
2

⌉
+ t + 2 or n = 3i − 2t + 2 for t + 2 ≤ i ≤ n − 1. It can be checked that

all integers n which satisfied this condition are n ∈ {16, 20, 21} or n = 9a + b + 25 for two nonnegative integer a and

b, where 0 ≤ b ≤ 2. Thus, the vertex-weights are pairwise distinct.

Case 3. n ∈ {16, 20, 21}
By applying λ, we have w(vt+1) = w(vn). Hence, we modified λ by defining a new labeling λ′ where λ′(vt+1vt+2) =

λ(vvt+2) and λ′(vvt+2) = λ(vt+1vt+2). We have w(vt+1) =
⌈

t+1
2

⌉
+ t + 8. It can be checked that the modification just

change w(vt+1). Thus, the vertex-weights (and the edge-weights) are pairwise distinct.

Case 4. n = 9a + b + 25 for two nonnegative integers a and b, with 0 ≤ b ≤ 2,

By applying λ, we have w(vt+2+a) = w(vn). Hence, we modified with λ′(vt+2+avt+3+a) = λ(vvt+3+a) and λ′(vvt+3+a) =

λ(vt+2+avt+3+a). We have w(vt+2+a) = n + 3a + 12. It can be checked that the modification just change w(vt+1). Thus,

the vertex-weights (and the edge-weights) are pairwise distinct. It complete the proof.

2.2. Total irregularity strength of a wheel graph

Theorem 2. Let n ≥ 3 and Wn be a wheel graph with n + 1 vertices and 2n edges. Then

ts(Wn) =

⌈
2n + 2

3

⌉
.

Proof. Since |V(Wn)| = n + 1 and |E(Wn)| = 2n, by (2), (4), and (5), we have ts(Wn) ≥
⌈

2n+2
3

⌉
. Let t =

⌈
2n+2

3

⌉
. For

the reverse inequality, we construct a total labeling λ : V ∪ E → {1, 2, · · · , t}. Let V(Wn) = {v} ∪ {vi |1 ≤ i ≤ n} and

E(Wn) = {vvi, v jv j+1, vnv1 |1 ≤ i ≤ n, 1 ≤ j ≤ n − 1}. We divide proof into 2 cases as follows:

Case 1. n = 5

The result is obvious as shown in Figure 1(b).

Case 2. n � 5

Define λ as follows:

λ(v) = t − 1;

λ(vi) =

{ ⌈ i
2

⌉
, for 1 ≤ i ≤ t − 1;

t, for t ≤ i ≤ n;

λ(vvi) =

{ ⌈ i+1
2

⌉
, for 1 ≤ i ≤ t − 1;

i − t + 3, for t ≤ i ≤ n;

λ(vnv1) = t − 1;

λ(vivi+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, for 1 ≤ i ≤ t − 2;⌈

t
2

⌉
+ 1, for i = t − 1;

n − 2t + 3 + i, for t ≤ i ≤ n − 1.
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It is easy to check that the largest label is t.
Next, we have

w(vvi) =

{
t + i, for 1 ≤ i ≤ t − 1;

t + 2 + i, for t ≤ i ≤ n;

w(vivi+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i + 2, for 1 ≤ i ≤ t − 2;

2t + 1, for i = t − 1;

n + 3 + i, for t ≤ i ≤ n − 1;

w(vnv1) = 2t;

and

w(v) =

{
1
2
n(n + 7 − 2t) + 1

4
t(3t − 6) − 1, for even t;

1
2
n(n + 7 − 2t) + 1

4
t(3t − 6) − 5

4
, for odd t;

w(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t + 2 for i = 1;

i + 3, for 2 ≤ i ≤ t − 2;⌈
t
2

⌉
+ t + 2, for i = t − 1;⌈

t
2

⌉
+ n + 7, for i = t;

2n − 4t + 3i + 8, for t + 1 ≤ i ≤ n − 1;

3n − t + 4 for i = n.

It can be checked that the edge-weights under λ form a consecutive sequence 3, 4, · · · , 2n + 2 and the vertex-weigths

w(vi) for 1 ≤ i ≤ n − 1 are pairwise distinct because of:

{w(v1)} = {t + 2};
{w(vi) | 2 ≤ i ≤ t − 2} = {5, 6, · · · , t + 1};

{w(vt−1)} =
{⌈ t

2

⌉
+ t + 2

}
;

{w(vt)} =
{⌈ t

2

⌉
+ n + 7

}
;

{w(vi) | t + 1 ≤ i ≤ n − 1} = {2n − t + 11, 2n − t + 14, · · · , 5n − 4t + 5}.
Next, we verify w(v) � w(vi),w(v) � w(vn), and w(vi) � w(vn). It is easy to check on n < 5. For n > 5, we consider that

whenever n is increase, the weight of v is strictly increase. Hence, just by checking on the lowest value n = 6, we have

w(v) > w(vn−1) and w(v) > w(vn). Since w(vn) > w(vi), for i ≤ t, we suppose that w(vn) = w(vi) , for t + 1 ≤ i ≤ n − 1,

then 3i = n + 3t − 4. There is no integer n which satisfy this condition. Thus, the vertex-weights are pairwise distinct.

It complete the proof.

2.3. Total irregularity strength of a triangular book graph

Theorem 3. Let n ≥ 3 and P1 � S n be a book graph with n triangular pages with n + 1 vertices and 2n − 1 edges.
Then

ts(P1 � S n) =

⌈
2n + 3

3

⌉
.

Proof. Since |V(P1 � S n)| = n + 2 and |E(P1 � S n)| = 2n + 1, by (1), (3), and (5), we have ts(P1 � S n) ≥
⌈

2n+3
3

⌉
. Let

t =
⌈

2n+3
3

⌉
. For the reverse inequality, we construct an irregular total labeling λ : V ∪ E → {1, 2, · · · , t}.

Let V(P1 � S n) = {u, v, v1, v2, · · · , vn} and E(P1 � S n) = {uv, uvi, vvi | 1 ≤ i ≤ n}. Let n ≡ m mod 3 for m = 0, 1, 2. We

divide proof into 2 cases as follows:

Case 1. n = 3

The result is obvious as shown in Figure 1(c).
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Case 2. n � 3

Define λ as follows:

λ(u) = 1;

λ(v) = t;

λ(vi) =

{
i, for 1 ≤ i ≤ t;
t, for t + 1 ≤ i ≤ n;

λ(uv) = t;

λ(uvi) =

{
1, for 1 ≤ i ≤ t;
i − t + 1, for t + 1 ≤ i ≤ n;

λ(vvi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n − t + 2, for 1 ≤ i ≤ 1

2
(t + m − 1);

n − t + 3, for 1
2
(t + m + 1) ≤ i ≤ t;

n − 2t + 3 + i, for t + 1 ≤ i ≤ n.

It is easy to check that the largest label is t.
Next, we have

w(uv) = 2t + 1;

w(uvi) = i + 2, for 1 ≤ i ≤ n;

w(vvi) =

{
n + 2 + i, for 1 ≤ i ≤ 1

2
(t + m − 1);

n + 3 + i, for 1
2
(t + m + 1) ≤ i ≤ n;

and

w(u) =
1

2
n (n − 2t + 3) +

1

2
t (t + 1) + 1;

w(v) =
1

2
n (3n − 4t + 7) +

1

2
t (t + 2) − 1

2
(m − 1);

w(vi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n − t + 3 + i for 1 ≤ i ≤ 1

2
(t + m − 1);

n − t + 4 + i, for 1
2
(t + m + 1) ≤ i ≤ t;

n − 2t + 4 + 2i for t + 1 ≤ i ≤ n.

It can be checked that the edge- weights under λ form a consecutive sequence 3, 4, · · · , 2n + 3 and the vertex-weights

w(vi) for 1 ≤ i ≤ n are pairwise distinct because of:

{
w(vi) | 1 ≤ i ≤ 1

2
(t + m − 1)

}
=

{
n − t + 4, n − t + 5, · · · , 1

2
(t + m − 1) + n − t + 3

}
;

{
w(vi) | 1

2
(t + m + 1) ≤ i ≤ t

}
=

{
1

2
(t + m − 1) + n − t + 5,

1

2
(t + m − 1) + n − t + 6, · · · , n + 4

}
;

{w(vi) | t + 1 ≤ i ≤ n} = {n + 6, n + 8, · · · , 3n − 2t + 4}.
Next, since w(u) < w(v), we verify w(u) � w(vn). Since the weight of u is strictly increase whenever n is increase,we

check on the lowest value n = 4, we have w(u) > w(vn). Thus, the vertex-weights are pairwise distinct. It complete

the proof.

2.4. Total irregularity strength of a friendship graph

A friendship graph Fn is a set of n-copies of a triangle whose a common vertex as a center and the other mutually

disjoint vertices. For the ith triangle , let v be the center and the other two vertices as xi and yi, respectively.
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Theorem 4. Let n ≥ 2 and Fn be a friendship graph with 2n + 1 vertices and 3n edges. Then

ts(Fn) = n + 1.

Proof. Let V(Fn) = {v, xi, yi|1 ≤ i ≤ n} and E(Fn) = {vxi, vyi, xiyi | 1 ≤ i ≤ n. By (2), (4) and (5), ts(Fn) ≥
⌈

3n+2
3

⌉
. Let

t =
⌈

3n+2
3

⌉
and r =

⌊
n−1

2

⌋
. For the reverse inequality, we divide all triangles into 3 different part, say r first triangles

vxi1 yi1 v, triangle vxr+1yr+1v, and n − r − 1 triangles vxi2 yi2 v, where i = 1, 2, · · · , s. We construct an irregular total

labeling λ : V ∪ E → {1, 2, · · · , t} of Fn as follows:

λ(v) = r + 1;

λ(xi1 ) = 1, for 1 ≤ i ≤ r;

λ(yi1 ) = 1, for 1 ≤ i ≤ r;

λ(xr+1) = r + 1;

λ(yr+1) = r + 1;

λ(xi2 ) = t, for 1 ≤ i ≤ n − r − 1;

λ(yi2 ) = t, for 1 ≤ i ≤ n − r − 1;

λ(xi1 yi1 ) = i, for 1 ≤ i ≤ r;

λ(vxi1 ) = 2i − 1, for 1 ≤ i ≤ r;

λ(vyi1 ) = 2i, for 1 ≤ i ≤ r;

λ(xr+1yr+1) = r + 1;

λ(vxr+1) = r + 2;

λ(vyr+1) = r + 3;

λ(xi2 yi2 ) = r + i + 1, for 1 ≤ i ≤ n − r − 1;

λ(vxi2 ) =

{
2i, for even n with 1 ≤ i ≤ n − r − 1;

2i + 1, for odd n with 1 ≤ i ≤ n − r − 1;

λ(vyi2 ) =

{
2i + 1, for even n with 1 ≤ i ≤ n − r − 1;

2i + 2, for odd n with 1 ≤ i ≤ n − r − 1.

It is easy to check that the largest label is t.
Next, we have

w(xi1 yi1 ) = i + 2, for 1 ≤ i ≤ r;

w(vxi1 ) = r + 2i + 1, for 1 ≤ i ≤ r;

w(vyi1 ) = r + 2i + 2, for 1 ≤ i ≤ r;

w(xr+1yr+1) = 3r + 3;

w(vxr+1) = 3r + 4;

w(vyr+1) = 3r + 5;

w(xi2 yi2 ) = 2t + r + i + 1, for 1 ≤ i ≤ n − r − 1;

w(vxi2 ) =

{
r + t + 2i + 1, for even n with 1 ≤ i ≤ n − r − 1;

r + t + 2i + 2, for odd n with 1 ≤ i ≤ n − r − 1, ;

w(vyi2 ) =

{
r + t + 2i + 2, for even n with 1 ≤ i ≤ n − r − 1;

r + t + 2i + 3, for odd n with 1 ≤ i ≤ n − r − 1;
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and

w(v) =

{
4r (r + 1) + n (2n − 4r − 1) + 4, for even n;

4r (r + 1) + n (2n − 4r + 1) + 2, for odd n;

w(xi1 ) = 3i, for 1 ≤ i ≤ r;

w(yi1 ) = 3i + 1, for 1 ≤ i ≤ r;

w(xr+1) = 3r + 4;

w(yr+1) = 3r + 5;

w(xi2 ) =

{
t + r + 3i + 1, for even n with 1 ≤ i ≤ n − r − 1;

t + r + 3i + 2, for odd n with 1 ≤ i ≤ n − r − 1;

w(yi2 ) =

{
t + r + 3i + 2, for even n with 1 ≤ i ≤ n − r − 1;

t + r + 3i + 3, for odd n with 1 ≤ i ≤ n − r − 1.

It can be checked that the edge-weights under λ form a consecutive sequence 3, 4, · · · , 2n + 2.
For even n, we have

{w(v)} = {4r (r + 1) + n (2n − 4r − 1) + 4};
{w(xi1 ) | 1 ≤ i ≤ r} = {3, 6, · · · , 3r};
{w(yi1 ) | 1 ≤ i ≤ r} = {4, 7, · · · , 3r + 1};

{w(xr+1)} = {3r + 4};
{w(yr+1)} = {3r + 5};

{w(xi2 ) | 1 ≤ i ≤ n − r − 1} = {t + r + 4, t + r + 7, · · · , 3n + t − 2r − 2};
{w(yi2 ) | 1 ≤ i ≤ n − r − 1} = {t + r + 5, t + r + 8, · · · , 3n + t − 2r − 1}.

Next, we verify w(v) � w(yi2 ). Since the weight of v is strictly increase whenever n is increase, we check on the lowest

value n = 2, we have w(v) > w(yn−r−1). Thus, the vertex-weights are pairwise distinct. It is similar for odd n. It

complete the proof.
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