33 research outputs found

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Virus like Particles in a Human Lung Tumor

    Full text link
    Ultrastructural studies of pulmonary needle biopsies from patients with alveolar cell carcinoma (ACC) revealed the presence of a virus-like material in the nucleus and cytoplasm of tumor cells. Stinson et. al. reported the presence of filamentous virus-like particles in four of six cases in an ultrastructural study of ACC. In vitro studies by Coalson et. al. confirmed the presence of a biological agent and demonstrated that cell-free supernate from tumor cell cultures could induce cytopathic effect when applied to indicator cell lines. It was also shown in this report that tumor cell lines derived from this tumor produced the filterable biological agent until the 18-20 passage in culture. An extension of this investigation on the cell lines derived from ACC demonstrated that a unique antigen was associated with ACC tumor cells and that this antigenicity could be induced in indicator cell lines following treatment with cell free extracts.</jats:p
    corecore