208 research outputs found

    Persistent Currents in 1D Disordered Rings of Interacting Electrons

    Full text link
    We calculate the persistent current of 1D rings of spinless fermions with short-range interactions on a lattice with up to 20 sites, and in the presence of disorder, for various band fillings. We find that {\it both} disorder and interactions always decrease the persistent current by localizing the electrons. Away from half-filling, the interaction has a much stronger influence in the presence of disorder than in the pure case.Comment: Latex file, 11 pages, 5 figures available on request, Report LPQTH-93/1

    Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects

    Full text link
    We report measurements of the irreversible magnetization M_i of a large number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them exhibit a maximum in M_i when the density of vortices equals the density of tracks, at temperatures above 40K. We show that the observation of these matching field effects is constrained to those crystals where the orientational and pinning energy dispersion of the CD system lies below a certain threshold. The amount of such dispersion is determined by the mass and energy of the irradiation ions, and by the crystal thickness. Time relaxation measurements show that the matching effects are associated with a reduction of the creep rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.

    Structural Probe of a Glass Forming Liquid: Generalized Compressibility

    Full text link
    We introduce a new quantity to probe the glass transition. This quantity is a linear generalized compressibility which depends solely on the positions of the particles. We have performed a molecular dynamics simulation on a glass forming liquid consisting of a two component mixture of soft spheres in three dimensions. As the temperature is lowered (or as the density is increased), the generalized compressibility drops sharply at the glass transition, with the drop becoming more and more abrupt as the measurement time increases. At our longest measurement times, the drop occurs approximately at the mode coupling temperature TCT_C. The drop in the linear generalized compressibility occurs at the same temperature as the peak in the specific heat. By examining the inherent structure energy as a function of temperature, we find that our results are consistent with the kinetic view of the glass transition in which the system falls out of equilibrium. We find no size dependence and no evidence for a second order phase transition though this does not exclude the possibility of a phase transition below the observed glass transition temperature. We discuss the relation between the linear generalized compressibility and the ordinary isothermal compressibility as well as the static structure factor.Comment: 18 pages, Latex, 26 encapsulated postscript figures, revised paper is shorter, to appear in Phys. Rev.

    From Linear to Nonlinear Response in Spin Glasses: Importance of Mean-Field-Theory Predictions

    Full text link
    Deviations from spin-glass linear response in a single crystal Cu:Mn 1.5 at % are studied for a wide range of changes in magnetic field, ΔH\Delta H. Three quantities, the difference TRM(MFCZFC)TRM-(MFC-ZFC), the effective waiting time, twefft_{w}^{eff}, and the difference TRM(tw)TRM(tw=0)TRM(t_{w})-TRM(t_{w}=0) are examined in our analysis. Three regimes of spin-glass behavior are observed as ΔH\Delta H increases. Lines in the (T,ΔH)(T,\Delta H) plane, corresponding to ``weak'' and ``strong'' violations of linear response under a change in magnetic field, are shown to have the same functional form as the de Almeida-Thouless critical line. Our results demonstrate the existence of a fundamental link between static and dynamic properties of spin glasses, predicted by the mean-field theory of aging phenomena.Comment: 9 pages, 10 figure

    Characterization of a c-Rel inhibitor that mediates anticancer properties in hematologic malignancies by blocking NF-κB-controlled oxidative stress responses

    Get PDF
    NF-\u3baB plays a variety of roles in oncogenesis and immunity that may be beneficial for therapeutic targeting, but strategies to selectively inhibit NF-\u3baB to exert antitumor activity have been elusive. Here, we describe IT-901, a bioactive naphthalenethiobarbiturate derivative that potently inhibits the NF-\u3baB subunit c-Rel. IT-901 suppressed graft-versus-host disease while preserving graft-versus-lymphoma activity during allogeneic transplantation. Further preclinical assessment of IT-901 for the treatment of human B-cell lymphoma revealed antitumor properties in vitro and in vivo without restriction to NF-\u3baB-dependent lymphoma. This nondiscriminatory, antilymphoma effect was attributed to modulation of the redox homeostasis in lymphoma cells resulting in oxidative stress. Moreover, NF-\u3baB inhibition by IT-901 resulted in reduced stimulation of the oxidative stress response gene heme oxygenase-1, and we demonstrated that NF-\u3baB inhibition exacerbated oxidative stress induction to inhibit growth of lymphoma cells. Notably, IT-901 did not elicit increased levels of reactive oxygen species in normal leukocytes, illustrating its cancer selective properties. Taken together, our results provide mechanistic insight and preclinical proof of concept for IT-901 as a novel therapeutic agent to treat human lymphoid tumors and ameliorate graft-versus-host disease

    Drying nano particles solution on an oscillating tip at an air liquid interface: what we can learn, what we can do

    Get PDF
    Evaporation of fluid at micro and nanometer scale may be used to self-assemble nanometre-sized particles in suspension. Evaporating process can be used to gently control flow in micro and nanofluidics, thus providing a potential mean to design a fine pattern onto a surface or to functionalize a nanoprobe tip. In this paper, we present an original experimental approach to explore this open and rather virgin domain. We use an oscillating tip at an air liquid interface with a controlled dipping depth of the tip within the range of the micrometer. Also, very small dipping depths of a few ten nanometers were achieved with multi walls carbon nanotubes glued at the tip apex. The liquid is an aqueous solution of functionalized nanoparticles diluted in water. Evaporation of water is the driving force determining the arrangement of nanoparticles on the tip. The results show various nanoparticles deposition patterns, from which the deposits can be classified in two categories. The type of deposit is shown to be strongly dependent on whether or not the triple line is pinned and of the peptide coating of the gold nanoparticle. In order to assess the classification, companion dynamical studies of nanomeniscus and related dissipation processes involved with thinning effects are presented

    Efficacy of menthol as an anesthetic for tambaqui (Colossoma macropomum, Characiformes: Characidae)

    Get PDF
    Anesthetics are important in fish culture to reduce handling stress and mortality. The objective of this work is to investigate menthol as an anesthetic for tambaqui. In the first series of tests, fish were exposed to various concentrations of menthol to evaluate induction time and stress responses. The second series examined the effect of exposure period to menthol at 150 mg/L on recovery time. The third assessed the best dosage for juveniles in larger tambaqui. The best concentration for surgical anesthesia is 150 mg/L. At this concentration the induction time is short, but their recovery time is significantly longer than that for lower concentrations. For biometry procedures, the best concentration is 100 mg/L. At this concentration the induction time is prolonged, but the recovery time is within the desired period. Recovery time for fish exposed to 150 mg/L is equal for 10, 20 or 30 minutes of exposure. The results confirmed that menthol is an adequate anesthetic for tambaqui.Os anestésicos são importantes na piscicultura para reduzir o estresse e a mortalidade no manejo. Este trabalho tem como objetivo determinar a eficácia do mentol para tambaqui durante o manejo. Na primeira série de testes, foi examinado o efeito da concentração de anestésico sobre indução à anestesia e o estresse de tambaqui. Na segunda série de testes, foi avaliada a recuperação dos peixes após a exposição a uma concentração de 150 mg/L de mentol por diferentes tempos. Na terceira série, foi avaliada se a melhor concentração encontrada para juvenil (150 mg/L) também era adequada para peixes maiores. A melhor concentração para uma anestesia cirúrgica foi 150 mg/L, pois o tempo de indução é rápido, porém a recuperação é significativamente mais demorada do que para as menores concentrações testadas. Para uma anestesia, com finalidade de biometria, a melhor concentração foi 100 mg/L. Nesta concentração o tempo de indução à anestesia é prolongado, porém o tempo de recuperação está dentro da faixa considerada adequada. O tempo de recuperação do tambaqui quando exposto a 150 mg/L é significativamente igual para 10, 20 e 30 minutos de anestesia. Os resultados obtidos mostram que o mentol é um anestésico eficiente para o tambaqui

    Accounting for International War: The State of the Discipline

    Full text link
    In studies of war it is important to observe that the processes leading to so frequent an event as conflict are not necessarily those that lead to so infrequent an event as war. Also, many models fail to recognize that a phenomenon irregularly distributed in time and space, such as war, cannot be explained on the basis of relatively invariant phenomena. Much research on periodicity in the occurrence of war has yielded little result, suggesting that the direction should now be to focus on such variables as diffusion and contagion. Structural variables, such as bipolarity, show contradictory results with some clear inter-century differences. Bipolarity, some results suggest, might have different effects on different social entities. A considerable number of studies analysing dyadic variables show a clear connection between equal capabilities among contending nations and escalation of conflict into war. Finally, research into national attributes often points to strength and geographical location as important variables. In general, the article concludes, there is room for modest optimism, as research into the question of war is no longer moving in non-cumulative circles. Systematic research is producing results and there is even a discernible tendency of convergence, in spite of a great diversity in theoretical orientations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69148/2/10.1177_002234338101800101.pd

    Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Get PDF
    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed
    corecore