44 research outputs found

    The solution of Burgers' equation for sinusoidal excitation at the upstream boundary

    Full text link
    This paper generates an exact solution to Burgers' nonlinear diffusion equation on a convective stream with sinusoidal excitation applied at the upstream boundary, x =0. The downstream boundary, effectively at x =∞, is assumed to always be far enough ahead of the convective front at x=V s t that no disturbance is felt there. The Hopf-Cole transformation is applied in achieving the analytical solution, but only after integrating the equation and its conditions in x to avoid a nonlinearity in the transformed upstream boundary condition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42700/1/10665_2006_Article_BF02383570.pd

    High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores

    Get PDF
    Records of chemical impurities from ice cores enable us to reconstruct the past deposition of aerosols onto polar ice sheets and alpine glaciers. Through this they allow us to gain insight into changes of the source, transport and deposition processes that ultimately determine the deposition flux at the coring location. However, the low concentrations of the aerosol species in the ice and the resulting high risk of contamination pose a formidable analytical challenge, especially if long, continuous and highly resolved records are needed. Continuous flow analysis, CFA, the continuous melting, decontamination and analysis of ice-core samples has mostly overcome this issue and has quickly become the de facto standard to obtain high-resolution aerosol records from ice cores after its inception at the University of Bern in the mid-1990s. Here, we present continuous records of calcium (Ca2+), sodium (Na+), ammonium (NH+4), nitrate (NO-3) and electrolytic conductivity at 1 mm depth resolution from the NGRIP (North Greenland Ice Core Project) and NEEM (North Greenland Eemian Ice Drilling) ice cores produced by the Bern Continuous Flow Analysis group in the years 2000 to 2011 (Erhardt et al., 2021). Both of the records were previously used in a number of studies but were never published in full 1 mm resolution. Alongside the 1 mm datasets we provide decadal averages, a detailed description of the methods, relevant references, an assessment of the quality of the data and its usable resolution. Along the way we will also give some historical context on the development of the Bern CFA system. The data is available in full 1 mm and 10-year-averaged resolution on PANGAEA (https://doi.org/10.1594/PANGAEA.935838, Erhardt et al., 2021

    Exception Handlers as Extensible Cases

    No full text
    Abstract. Exceptions are an indispensable part of modern programming languages. They are, however, handled poorly, especially by higherorder languages such as Standard ML and Haskell: in both languages a well-typed program can unexpectedly fail due to an uncaught exception. In this paper, we propose a technique for type-safe exception handling. Our approach relies on representing exceptions as sums and assigning exception handlers polymorphic, extensible row types. Based on this representation, we describe an implicitly typed external language EL where well-typed programs do not raise any unhandled exceptions. EL relies on sums, extensible records, and polymorphism to represent exceptionhandling, and its type system is no more complicated than that for existing languages with polymorphic extensible records. EL is translated into an internal language IL that is a variant of System F extended with extensible records. The translation performs a CPS transformation to represent exception handlers as continuations. It also relies on duality to transform sums into records. (The details for this translation are given in an accompanying technical report.) We describe the implementation of a compiler for a concrete language based on EL. The compiler performs full type inference and translates EL-style source code to machine code. Type inference relieves the programmer from having to provide explicit exception annotations. We believe that this is the first practical proposal for integrating exceptions into the type system of a higher-order language.

    Radiation measured for MATROSHKA-1 experiment with passive dosimeters

    No full text
    The radiation field in low Earth orbit (LEO) and deep space is complicated. The radiation impact on astronauts depends strongly on the particles’ linear energy transfer (LET) and is dominated by high LET radiation. Radiation risk is a key concern for human space flight and can be estimated with radiation LET spectra measured for the different organs of an astronaut phantom. At present the best passive personal dosimeters used for astronauts are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) for low LET and CR-39 plastic nuclear track detectors (PNTDs) for high LET. CR-39 PNTDs, TLDs and OSLDs were used for the MATROSHKA-1 experiment to measure radiation experienced by astronauts outside the international space station (ISS). LET spectra and radiation field quantities (differential and integral fluence, absorbed dose and dose equivalent) were measured for the different organs and skin locations of the MAROSHKA phantom using CR-39 PNTDs and TLDs. The spectra and results can be used to determine the radiation quantities for astronaut's extra vehicular activity (EVA) and for the further in-depth study of the radiation risk for astronauts. Sensitivity fading of CR-39 detectors was observed for the MATROSHKA experiment and a practical method was developed to correct it. This paper presents the radiation LET spectra measured with CR-39 PNTDs and the total radiation quantities combined from results measured with CR-39 PNTDs and TLDs

    Effects of Xenon Propellant on the Spin Up/Down of the Dawn Spacecraft

    No full text
    corecore