132 research outputs found

    Nutrigenomics of Body Weight Regulation: A Rationale for Careful Dissection of Individual Contributors

    Get PDF
    Body weight stability may imply active regulation towards a certain physiological condition, a body weight setpoint. This interpretation is ill at odds with the world-wide increase in overweight and obesity. Until now, a body weight setpoint has remained elusive and the setpoint theory did not provide practical clues for body weight reduction interventions. For this an alternative theoretical model is necessary, which is available as the settling point model. The settling point model postulates that there is little active regulation towards a predefined body weight, but that body weight settles based on the resultant of a number of contributors, represented by the individual’s genetic predisposition, in interaction with environmental and socioeconomic factors, such as diet and lifestyle. This review refines the settling point model and argues that by taking body weight regulation from a settling point perspective, the road will be opened to careful dissection of the various contributors to establishment of body weight and its regulation. This is both necessary and useful. Nutrigenomic technologies may help to delineate contributors to body weight settling. Understanding how and to which extent the different contributors influence body weight will allow the design of weight loss and weight maintenance interventions, which hopefully are more successful than those that are currently available

    Preservation of Metabolic Flexibility in Skeletal Muscle by a Combined Use of n-3 PUFA and Rosiglitazone in Dietary Obese Mice

    Get PDF
    Insulin resistance, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinediones (TZDs), anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F), cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI), cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients

    Effects of early-life stress on peripheral and central mitochondria in male mice across ages

    Get PDF
    Exposure to early-life stress (ES) increases the vulnerability to develop metabolic diseases as well as cognitive dysfunction, but the specific biological underpinning of the ES-induced programming is unknown. Metabolic and cognitive disorders are often comorbid, suggesting possible converging underlying pathways. Mitochondrial dysfunction is implicated in both metabolic diseases and cognitive dysfunction and chronic stress impairs mitochondrial functioning. However, if and how mitochondria are impacted by ES and whether they are implicated in the ES-induced programming remains to be determined. ES was applied by providing mice with limited nesting and bedding material from postnatal day (P)2-P9, and metabolic parameters, cognitive functions and multiple aspects of mitochondria biology (i.e. mitochondrial electron transport chain (ETC) complex activity, mitochondrial DNA copy number, expression of genes relevant for mitochondrial function, and the antioxidant capacity) were studied in muscle, hypothalamus and hippocampus at P9 and late adulthood (10–12 months of age). We show that ES altered bodyweight (gain), adiposity and glucose levels at P9, but not in late adulthood. At this age, however, ES exposure led to cognitive impairments. ES affected peripheral and central mitochondria in an age-dependent manner. At P9, both muscle and hypothalamic ETC activity were affected by ES, while in hippocampus, ES altered the expression of genes involved in fission and antioxidant defence. In adulthood, alterations in ETC complex activity were observed in the hypothalamus specifically, whereas in muscle and hippocampus ES affected the expression of genes involved in mitophagy and fission, respectively. Our study demonstrates that ES affects peripheral and central mitochondria biology throughout life, thereby uncovering a converging mechanism that might contribute to the ES-induced vulnerability for both metabolic diseases and cognitive dysfunction, which could serve as a novel target for intervention.</p

    Языковое своеобразие стихотворения Зульфии "Пришла весна, спрашивает о тебе"

    Get PDF
    В жизни и творчестве узбекской поэтессы Зульфии Исраиловой особую роль играет весна. Она родилась в первый день весны. Каждую весну с момента гибели спутника жизни поэта Хамида Олимджана, любившего эту пору, Зульфия посвящала ему стихотворение. Всего их пятьдесят. При цитировании документа, используйте ссылку http://essuir.sumdu.edu.ua/handle/123456789/3470

    Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice

    Get PDF
    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG) were decreased with 14% (

    High-fat dietary restriction in mice induces substrate efficiency and improves metabolic health [Mus musculus]

    No full text
    (Submitter supplied) High energy intake and, specifically, high dietary fat intake challenges the mammalian metabolism and correlates with many metabolic disorders, such as obesity and diabetes. Dietary restriction (DR) is, on the other hand, known to prevent the development of metabolic disorders. The current Western diets are highly enriched in fat and it is as yet unclear whether DR on a certain high-fat (HF) diet elicits similar beneficial effects on health. Here, we report that HF-DR improves metabolic health of mice, compared to mice receiving the same diet on an ad-libitum basis (HF-AL). Already after five weeks of restriction the serum levels of cholesterol and leptin were significantly decreased in HF-DR mice, while their glucose sensitivity and serum adiponectin levels were increased. The body weight and measured serum parameters remained stable in the following 7 weeks of restriction, implying metabolic adaptation. To understand the molecular events associated with this adaptation, we analysed gene expression in white adipose tissue (WAT) with whole genome microarrays. HF-DR strongly influenced gene expression in WAT; in total 8,643 genes were differentially expressed between both groups of mice, with a major role for genes involved in lipid metabolism and mitochondrial functioning. This was confirmed by qRT-PCR and substantiated by an increase in mitochondrial density in WAT of HF-DR mice. These results provide new insights in the metabolic flexibility of dietary restricted animals and suggest the development of substrate efficiency. Limiting food intake by decreasing portion sizes, while maintaining energy sufficiency, may similarly benefit metabolic health in humans
    corecore